Savinov Andrew, Perez Christian F, Block Steven M
Biophysics Program, Stanford University, Stanford, CA 94305, USA.
Department of Physics, Stanford University, Stanford, CA 94305, USA.
Biochim Biophys Acta. 2014 Oct;1839(10):1030-1045. doi: 10.1016/j.bbagrm.2014.04.005. Epub 2014 Apr 13.
The folding dynamics of riboswitches are central to their ability to modulate gene expression in response to environmental cues. In most cases, a structural competition between the formation of a ligand-binding aptamer and an expression platform (or some other competing off-state) determines the regulatory outcome. Here, we review single-molecule studies of riboswitch folding and function, predominantly carried out using single-molecule FRET or optical trapping approaches. Recent results have supplied new insights into riboswitch folding energy landscapes, the mechanisms of ligand binding, the roles played by divalent ions, the applicability of hierarchical folding models, and kinetic vs. thermodynamic control schemes. We anticipate that future work, based on improved data sets and potentially combining multiple experimental techniques, will enable the development of more complete models for complex RNA folding processes. This article is part of a Special Issue entitled: Riboswitches.
核糖开关的折叠动力学是其响应环境信号调节基因表达能力的核心。在大多数情况下,配体结合适体与表达平台(或其他一些竞争性非活性状态)形成之间的结构竞争决定了调控结果。在这里,我们综述了核糖开关折叠和功能的单分子研究,这些研究主要使用单分子荧光共振能量转移(FRET)或光镊方法进行。最近的研究结果为核糖开关折叠能量景观、配体结合机制、二价离子的作用、分层折叠模型的适用性以及动力学与热力学控制方案提供了新的见解。我们预计,基于改进的数据集并可能结合多种实验技术的未来工作,将能够为复杂的RNA折叠过程开发更完整的模型。本文是名为“核糖开关”的特刊的一部分。