Suppr超能文献

急性肾移植排斥反应背景下外周全血转录组淋巴细胞区室的两阶段计算机反卷积分析

Two-stage, in silico deconvolution of the lymphocyte compartment of the peripheral whole blood transcriptome in the context of acute kidney allograft rejection.

作者信息

Shannon Casey P, Balshaw Robert, Ng Raymond T, Wilson-McManus Janet E, Keown Paul, McMaster Robert, McManus Bruce M, Landsberg David, Isbel Nicole M, Knoll Greg, Tebbutt Scott J

机构信息

PROOF Centre of Excellence, Vancouver, BC, Canada; UBC James Hogg Centre for Heart Lung Innovations, Vancouver, BC, Canada.

PROOF Centre of Excellence, Vancouver, BC, Canada; Department of Statistics, University of British Columbia, Vancouver, BC, Canada.

出版信息

PLoS One. 2014 Apr 14;9(4):e95224. doi: 10.1371/journal.pone.0095224. eCollection 2014.

Abstract

Acute rejection is a major complication of solid organ transplantation that prevents the long-term assimilation of the allograft. Various populations of lymphocytes are principal mediators of this process, infiltrating graft tissues and driving cell-mediated cytotoxicity. Understanding the lymphocyte-specific biology associated with rejection is therefore critical. Measuring genome-wide changes in transcript abundance in peripheral whole blood cells can deliver a comprehensive view of the status of the immune system. The heterogeneous nature of the tissue significantly affects the sensitivity and interpretability of traditional analyses, however. Experimental separation of cell types is an obvious solution, but is often impractical and, more worrying, may affect expression, leading to spurious results. Statistical deconvolution of the cell type-specific signal is an attractive alternative, but existing approaches still present some challenges, particularly in a clinical research setting. Obtaining time-matched sample composition to biologically interesting, phenotypically homogeneous cell sub-populations is costly and adds significant complexity to study design. We used a two-stage, in silico deconvolution approach that first predicts sample composition to biologically meaningful and homogeneous leukocyte sub-populations, and then performs cell type-specific differential expression analysis in these same sub-populations, from peripheral whole blood expression data. We applied this approach to a peripheral whole blood expression study of kidney allograft rejection. The patterns of differential composition uncovered are consistent with previous studies carried out using flow cytometry and provide a relevant biological context when interpreting cell type-specific differential expression results. We identified cell type-specific differential expression in a variety of leukocyte sub-populations at the time of rejection. The tissue-specificity of these differentially expressed probe-set lists is consistent with the originating tissue and their functional enrichment consistent with allograft rejection. Finally, we demonstrate that the strategy described here can be used to derive useful hypotheses by validating a cell type-specific ratio in an independent cohort using the nanoString nCounter assay.

摘要

急性排斥反应是实体器官移植的主要并发症,会阻碍同种异体移植物的长期同化。多种淋巴细胞群体是这一过程的主要介导者,它们浸润移植组织并驱动细胞介导的细胞毒性。因此,了解与排斥反应相关的淋巴细胞特异性生物学特性至关重要。测量外周全血细胞中转录本丰度的全基因组变化可以全面了解免疫系统的状态。然而,组织的异质性显著影响传统分析的灵敏度和可解释性。实验性分离细胞类型是一个明显的解决方案,但通常不切实际,更令人担忧的是,可能会影响表达,导致虚假结果。细胞类型特异性信号的统计反卷积是一种有吸引力的替代方法,但现有方法仍然存在一些挑战,特别是在临床研究环境中。获取与生物学上有趣的、表型同质的细胞亚群时间匹配的样本组成成本高昂,并且会增加研究设计的复杂性。我们使用了一种两阶段的计算机反卷积方法,该方法首先预测样本组成到生物学上有意义且同质的白细胞亚群,然后在这些相同的亚群中进行细胞类型特异性差异表达分析,基于外周全血表达数据。我们将这种方法应用于肾移植排斥反应的外周全血表达研究。所发现的差异组成模式与先前使用流式细胞术进行的研究一致,并在解释细胞类型特异性差异表达结果时提供了相关的生物学背景。我们在排斥反应时的多种白细胞亚群中鉴定出细胞类型特异性差异表达。这些差异表达探针集列表的组织特异性与起源组织一致,其功能富集与同种异体移植排斥反应一致。最后,我们证明这里描述的策略可用于通过使用纳米String nCounter分析在独立队列中验证细胞类型特异性比率来得出有用的假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/205c/3986379/58076582a2e0/pone.0095224.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验