Suppr超能文献

氧化还原与一氧化氮介导的感觉神经元离子通道功能调节

Redox and nitric oxide-mediated regulation of sensory neuron ion channel function.

作者信息

Gamper Nikita, Ooi Lezanne

机构信息

1 Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds , Leeds, United Kingdom .

出版信息

Antioxid Redox Signal. 2015 Feb 20;22(6):486-504. doi: 10.1089/ars.2014.5884. Epub 2014 Apr 15.

Abstract

SIGNIFICANCE

Reactive oxygen and nitrogen species (ROS and RNS, respectively) can intimately control neuronal excitability and synaptic strength by regulating the function of many ion channels. In peripheral sensory neurons, such regulation contributes towards the control of somatosensory processing; therefore, understanding the mechanisms of such regulation is necessary for the development of new therapeutic strategies and for the treatment of sensory dysfunctions, such as chronic pain.

RECENT ADVANCES

Tremendous progress in deciphering nitric oxide (NO) and ROS signaling in the nervous system has been made in recent decades. This includes the recognition of these molecules as important second messengers and the elucidation of their metabolic pathways and cellular targets. Mounting evidence suggests that these targets include many ion channels which can be directly or indirectly modulated by ROS and NO. However, the mechanisms specific to sensory neurons are still poorly understood. This review will therefore summarize recent findings that highlight the complex nature of the signaling pathways involved in redox/NO regulation of sensory neuron ion channels and excitability; references to redox mechanisms described in other neuron types will be made where necessary.

CRITICAL ISSUES

The complexity and interplay within the redox, NO, and other gasotransmitter modulation of protein function are still largely unresolved. Issues of specificity and intracellular localization of these signaling cascades will also be addressed.

FUTURE DIRECTIONS

Since our understanding of ROS and RNS signaling in sensory neurons is limited, there is a multitude of future directions; one of the most important issues for further study is the establishment of the exact roles that these signaling pathways play in pain processing and the translation of this understanding into new therapeutics.

摘要

意义

活性氧和活性氮(分别为ROS和RNS)可通过调节多种离子通道的功能来密切控制神经元兴奋性和突触强度。在外周感觉神经元中,这种调节有助于躯体感觉处理的控制;因此,了解这种调节机制对于开发新的治疗策略以及治疗感觉功能障碍(如慢性疼痛)是必要的。

最新进展

近几十年来,在破译神经系统中一氧化氮(NO)和ROS信号传导方面取得了巨大进展。这包括将这些分子识别为重要的第二信使,以及阐明它们的代谢途径和细胞靶点。越来越多的证据表明,这些靶点包括许多可被ROS和NO直接或间接调节的离子通道。然而,感觉神经元特有的机制仍知之甚少。因此,本综述将总结近期的研究结果,这些结果突出了感觉神经元离子通道和兴奋性的氧化还原/NO调节中所涉及信号通路的复杂性;必要时将提及其他神经元类型中描述的氧化还原机制。

关键问题

氧化还原、NO和其他气体递质对蛋白质功能调节的复杂性和相互作用在很大程度上仍未解决。这些信号级联的特异性和细胞内定位问题也将得到探讨。

未来方向

由于我们对感觉神经元中ROS和RNS信号传导的了解有限,因此有许多未来方向;进一步研究的最重要问题之一是确定这些信号通路在疼痛处理中的确切作用,并将这种认识转化为新的治疗方法。

相似文献

2
Gasotransmitter Heterocellular Signaling.气体递质异细胞信号传导
Antioxid Redox Signal. 2017 Jun 1;26(16):936-960. doi: 10.1089/ars.2016.6909. Epub 2017 Apr 6.
3
Regulation of Ion Channel Function by Gas Molecules.气体分子对离子通道功能的调节。
Adv Exp Med Biol. 2021;1349:139-164. doi: 10.1007/978-981-16-4254-8_8.
6
Redox regulation of neuronal voltage-gated calcium channels.神经元电压门控钙通道的氧化还原调节
Antioxid Redox Signal. 2014 Aug 20;21(6):880-91. doi: 10.1089/ars.2013.5610. Epub 2013 Oct 25.
8
Redox regulation of ion channels.离子通道的氧化还原调节
Antioxid Redox Signal. 2014 Aug 20;21(6):859-62. doi: 10.1089/ars.2014.6019. Epub 2014 Jul 8.
9
Modulation of ion channels by hydrogen sulfide.硫化氢对离子通道的调制作用。
Antioxid Redox Signal. 2012 Jul 1;17(1):95-105. doi: 10.1089/ars.2011.4359. Epub 2012 Jan 13.

引用本文的文献

2
Advances in magnetic field approaches for non-invasive targeting neuromodulation.用于非侵入性靶向神经调节的磁场方法进展。
Front Hum Neurosci. 2025 Apr 28;19:1489940. doi: 10.3389/fnhum.2025.1489940. eCollection 2025.

本文引用的文献

3
Oxidative modulation of voltage-gated potassium channels.电压门控钾通道的氧化调节
Antioxid Redox Signal. 2014 Aug 20;21(6):933-52. doi: 10.1089/ars.2013.5614. Epub 2013 Oct 26.
10
The ion channel TRPA1 is required for chronic itch.离子通道 TRPA1 是慢性瘙痒所必需的。
J Neurosci. 2013 May 29;33(22):9283-94. doi: 10.1523/JNEUROSCI.5318-12.2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验