Suppr超能文献

Chronic exposure of primates to 60-Hz electric and magnetic fields: II. Neurochemical effects.

作者信息

Seegal R F, Wolpaw J R, Dowman R

机构信息

Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201.

出版信息

Bioelectromagnetics. 1989;10(3):289-301. doi: 10.1002/bem.2250100307.

Abstract

We exposed Macaca nemestrina (pig-tailed macaques) to electric (E) and magnetic (B) fields ranging in intensity from 3 kV/m and 0.1 G to 30 kV/m and 0.9 G for three 21-day (d) periods. Experimental animals were exposed to sham E and B fields for two 21-d periods, one prior to and one following actual exposure to E and B fields, resulting in a total of five 21-d periods. Control animals were exposed to sham E and B fields for the entire 105-d interval. At the end of each 21-d period cerebrospinal fluid (CSF) was obtained by lumbar puncture and analyzed for concentrations of homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), metabolites of dopamine and serotonin neurotransmitters, respectively, by high-performance liquid chromatography with electrochemical detection (HPLC-ECD). Results are based on an examination of six experimental and four control animals. Exposure to E and B fields at all strengths was associated with a significant decline in CSF concentrations of both HVA and 5-HIAA when statistical comparisons were made against values obtained at the end of the preexposure interval. However, HVA returned to preexposure levels during the postexposure period, while 5-HIAA did not. No significant change in the concentrations of HVA or 5-HIAA was noted in the control animals. These results strongly suggest that exposure of the nonhuman primate to E and B fields can significantly affect specific biochemical estimates of nervous system function. These effects may involve alterations either in neuronal activity or in the activity of enzymes that catabolize the neurotransmitters.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验