Sengupta B, Friston K J, Penny W D
Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3BG, UK.
Neuroimage. 2014 Sep;98:521-7. doi: 10.1016/j.neuroimage.2014.04.040. Epub 2014 Apr 23.
Data assimilation is a fundamental issue that arises across many scales in neuroscience - ranging from the study of single neurons using single electrode recordings to the interaction of thousands of neurons using fMRI. Data assimilation involves inverting a generative model that can not only explain observed data but also generate predictions. Typically, the model is inverted or fitted using conventional tools of (convex) optimization that invariably extremise some functional - norms, minimum descriptive length, variational free energy, etc. Generally, optimisation rests on evaluating the local gradients of the functional to be optimized. In this paper, we compare three different gradient estimation techniques that could be used for extremising any functional in time - (i) finite differences, (ii) forward sensitivities and a method based on (iii) the adjoint of the dynamical system. We demonstrate that the first-order gradients of a dynamical system, linear or non-linear, can be computed most efficiently using the adjoint method. This is particularly true for systems where the number of parameters is greater than the number of states. For such systems, integrating several sensitivity equations - as required with forward sensitivities - proves to be most expensive, while finite-difference approximations have an intermediate efficiency. In the context of neuroimaging, adjoint based inversion of dynamical causal models (DCMs) can, in principle, enable the study of models with large numbers of nodes and parameters.
数据同化是神经科学中许多尺度上都会出现的一个基本问题——从使用单电极记录对单个神经元的研究到使用功能磁共振成像(fMRI)对数千个神经元的相互作用的研究。数据同化涉及对一个生成模型进行求逆,该模型不仅可以解释观测数据,还能生成预测。通常,使用(凸)优化的传统工具对模型进行求逆或拟合,这些工具总是使某些函数——范数、最小描述长度、变分自由能等——达到极值。一般来说,优化依赖于评估要优化的函数的局部梯度。在本文中,我们比较了三种不同的梯度估计技术,它们可用于及时使任何函数达到极值——(i)有限差分法,(ii)前向灵敏度法,以及一种基于(iii)动力系统伴随的方法。我们证明,使用伴随方法可以最有效地计算动力系统(线性或非线性)的一阶梯度。对于参数数量大于状态数量的系统尤其如此。对于此类系统,正如前向灵敏度法所要求的那样,对多个灵敏度方程进行积分被证明是最昂贵的,而有限差分近似法的效率则处于中间水平。在神经成像的背景下,基于伴随的动态因果模型(DCM)求逆原则上可以对具有大量节点和参数的模型进行研究。