Suppr超能文献

利用小角X射线散射确定RNA的拓扑结构

Topological Structure Determination of RNA Using Small-Angle X-Ray Scattering.

作者信息

Bhandari Yuba R, Fan Lixin, Fang Xianyang, Zaki George F, Stahlberg Eric A, Jiang Wei, Schwieters Charles D, Stagno Jason R, Wang Yun-Xing

机构信息

Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, United States.

Leidos Biomedical Research Inc., Frederick, MD 21702, United States.

出版信息

J Mol Biol. 2017 Nov 24;429(23):3635-3649. doi: 10.1016/j.jmb.2017.09.006. Epub 2017 Sep 14.

Abstract

Knowledge of RNA three-dimensional topological structures provides important insight into the relationship between RNA structural components and function. It is often likely that near-complete sets of biochemical and biophysical data containing structural restraints are not available, but one still wants to obtain knowledge about approximate topological folding of RNA. In this regard, general methods for determining such topological structures with minimum readily available restraints are lacking. Naked RNAs are difficult to crystallize and NMR spectroscopy is generally limited to small RNA fragments. By nature, sequence determines structure and all interactions that drive folding are self-contained within sequence. Nevertheless, there is little apparent correlation between primary sequences and three-dimensional folding unless supplemented with experimental or phylogenetic data. Thus, there is an acute need for a robust high-throughput method that can rapidly determine topological structures of RNAs guided by some experimental data. We present here a novel method (RS3D) that can assimilate the RNA secondary structure information, small-angle X-ray scattering data, and any readily available tertiary contact information to determine the topological fold of RNA. Conformations are firstly sampled at glob level where each glob represents a nucleotide. Best-ranked glob models can be further refined against solvent accessibility data, if available, and then converted to explicit all-atom coordinates for refinement against SAXS data using the Xplor-NIH program. RS3D is widely applicable to a variety of RNA folding architectures currently present in the structure database. Furthermore, we demonstrate applicability and feasibility of the program to derive low-resolution topological structures of relatively large multi-domain RNAs.

摘要

对RNA三维拓扑结构的了解为洞察RNA结构成分与功能之间的关系提供了重要线索。通常情况下,可能无法获得包含结构限制的近乎完整的生化和生物物理数据集,但人们仍然希望获取有关RNA近似拓扑折叠的知识。在这方面,缺乏用最少的现成限制来确定此类拓扑结构的通用方法。裸露的RNA难以结晶,核磁共振光谱法通常仅限于小RNA片段。从本质上讲,序列决定结构,所有驱动折叠的相互作用都包含在序列中。然而,除非辅以实验或系统发育数据,否则一级序列与三维折叠之间几乎没有明显的相关性。因此,迫切需要一种强大的高通量方法,能够在一些实验数据的指导下快速确定RNA的拓扑结构。我们在此提出一种新方法(RS3D),它可以整合RNA二级结构信息、小角X射线散射数据以及任何现成的三级接触信息,以确定RNA的拓扑折叠。首先在球状体水平上对构象进行采样,其中每个球状体代表一个核苷酸。如果有溶剂可及性数据,排名最佳的球状体模型可以进一步根据该数据进行优化,然后使用Xplor-NIH程序转换为明确的全原子坐标,以根据小角X射线散射数据进行优化。RS3D广泛适用于目前结构数据库中存在的各种RNA折叠结构。此外,我们证明了该程序推导相对较大的多结构域RNA低分辨率拓扑结构的适用性和可行性。

相似文献

1
Topological Structure Determination of RNA Using Small-Angle X-Ray Scattering.
J Mol Biol. 2017 Nov 24;429(23):3635-3649. doi: 10.1016/j.jmb.2017.09.006. Epub 2017 Sep 14.
2
Modeling RNA topological structures using small angle X-ray scattering.
Methods. 2016 Jul 1;103:18-24. doi: 10.1016/j.ymeth.2016.04.015. Epub 2016 Jun 2.
3
Small-angle X-ray scattering: a bridge between RNA secondary structures and three-dimensional topological structures.
Curr Opin Struct Biol. 2015 Feb;30:147-160. doi: 10.1016/j.sbi.2015.02.010. Epub 2015 Mar 10.
4
Deriving RNA topological structure from SAXS.
Methods Enzymol. 2022;677:479-529. doi: 10.1016/bs.mie.2022.08.037. Epub 2022 Oct 26.
5
Combined Small-Angle X-ray and Neutron Scattering Restraints in Molecular Dynamics Simulations.
J Chem Theory Comput. 2019 Aug 13;15(8):4687-4698. doi: 10.1021/acs.jctc.9b00292. Epub 2019 Jul 30.
6
RNA structure determination using SAXS data.
J Phys Chem B. 2010 Aug 12;114(31):10039-48. doi: 10.1021/jp1057308.
7
Rapid global structure determination of large RNA and RNA complexes using NMR and small-angle X-ray scattering.
Methods. 2010 Oct;52(2):180-91. doi: 10.1016/j.ymeth.2010.06.009. Epub 2010 Jun 8.
8
RNA 3D structure modeling by fragment assembly with small-angle X-ray scattering restraints.
Bioinformatics. 2023 Sep 2;39(9). doi: 10.1093/bioinformatics/btad527.
9
A method for helical RNA global structure determination in solution using small-angle x-ray scattering and NMR measurements.
J Mol Biol. 2009 Oct 30;393(3):717-34. doi: 10.1016/j.jmb.2009.08.001. Epub 2009 Aug 8.
10
Use of small angle X-ray scattering (SAXS) to characterize conformational states of functional RNAs.
Methods Enzymol. 2009;469:237-51. doi: 10.1016/S0076-6879(09)69011-X. Epub 2009 Nov 17.

引用本文的文献

1
Determining structures of RNA conformers using AFM and deep neural networks.
Nature. 2025 Jan;637(8048):1234-1243. doi: 10.1038/s41586-024-07559-x. Epub 2024 Dec 18.
2
3
RNA structure determination: From 2D to 3D.
Fundam Res. 2023 Jun 12;3(5):727-737. doi: 10.1016/j.fmre.2023.06.001. eCollection 2023 Sep.
5
Visualizing RNA conformational and architectural heterogeneity in solution.
Nat Commun. 2023 Feb 9;14(1):714. doi: 10.1038/s41467-023-36184-x.
6
Advances and opportunities in RNA structure experimental determination and computational modeling.
Nat Methods. 2022 Oct;19(10):1193-1207. doi: 10.1038/s41592-022-01623-y. Epub 2022 Oct 6.
7
Dynamic Structural Biology Experiments at XFEL or Synchrotron Sources.
Methods Mol Biol. 2021;2305:203-228. doi: 10.1007/978-1-0716-1406-8_11.
8
Advances in RNA 3D Structure Modeling Using Experimental Data.
Front Genet. 2020 Oct 26;11:574485. doi: 10.3389/fgene.2020.574485. eCollection 2020.
9
Computational modeling of RNA 3D structure based on experimental data.
Biosci Rep. 2019 Feb 8;39(2). doi: 10.1042/BSR20180430. Print 2019 Feb 28.

本文引用的文献

1
3D RNA and Functional Interactions from Evolutionary Couplings.
Cell. 2016 May 5;165(4):963-75. doi: 10.1016/j.cell.2016.03.030. Epub 2016 Apr 14.
2
Global shape mimicry of tRNA within a viral internal ribosome entry site mediates translational reading frame selection.
Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):E6446-55. doi: 10.1073/pnas.1512088112. Epub 2015 Nov 9.
3
High-throughput determination of RNA structure by proximity ligation.
Nat Biotechnol. 2015 Sep;33(9):980-4. doi: 10.1038/nbt.3289. Epub 2015 Aug 3.
4
RNA-Puzzles Round II: assessment of RNA structure prediction programs applied to three large RNA structures.
RNA. 2015 Jun;21(6):1066-84. doi: 10.1261/rna.049502.114. Epub 2015 Apr 16.
5
Small-angle X-ray scattering: a bridge between RNA secondary structures and three-dimensional topological structures.
Curr Opin Struct Biol. 2015 Feb;30:147-160. doi: 10.1016/j.sbi.2015.02.010. Epub 2015 Mar 10.
6
Modeling complex RNA tertiary folds with Rosetta.
Methods Enzymol. 2015;553:35-64. doi: 10.1016/bs.mie.2014.10.051. Epub 2015 Feb 12.
7
RNA tertiary structure analysis by 2'-hydroxyl molecular interference.
Biochemistry. 2014 Nov 4;53(43):6825-33. doi: 10.1021/bi501218g. Epub 2014 Oct 23.
8
Global analysis of riboswitches by small-angle X-ray scattering and calorimetry.
Biochim Biophys Acta. 2014 Oct;1839(10):1020-1029. doi: 10.1016/j.bbagrm.2014.04.014. Epub 2014 Apr 24.
10
Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots.
Proc Natl Acad Sci U S A. 2013 Apr 2;110(14):5498-503. doi: 10.1073/pnas.1219988110. Epub 2013 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验