Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37070 Göttingen, Germany; Department of Neurology, University of Göttingen Medical School, 37073 Göttingen, Germany.
Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37070 Göttingen, Germany.
Curr Opin Chem Biol. 2014 Jun;20:9-15. doi: 10.1016/j.cbpa.2014.03.019. Epub 2014 Apr 25.
Mitochondria, the powerhouses of the cell, are essential organelles in eukaryotic cells. With their complex inner architecture featuring a smooth outer and a highly convoluted inner membrane, they are challenging objects for microscopy. The diameter of mitochondria is generally close to the resolution limit of conventional light microscopy, rendering diffraction-unlimited super-resolution light microscopy (nanoscopy) for imaging submitochondrial protein distributions often mandatory. In this review, we discuss what can be expected when imaging mitochondria with conventional diffraction-limited and diffraction-unlimited microscopy. We provide an overview on recent studies using super-resolution microscopy to investigate mitochondria and discuss further developments and challenges in mitochondrial biology that might by addressed with these technologies in the future.
线粒体是细胞的“动力工厂”,是真核细胞中的重要细胞器。它们的内部结构复杂,外膜光滑,内膜高度曲折,这使得它们成为显微镜下的挑战对象。线粒体的直径通常接近传统光学显微镜的分辨率极限,因此对亚线粒体蛋白分布进行成像往往需要无衍射限制的超分辨率光显微镜(纳米显微镜)。在这篇综述中,我们讨论了使用传统的有衍射极限和无衍射限制的显微镜对线粒体进行成像时可以预期到的情况。我们概述了最近使用超分辨率显微镜研究线粒体的研究,并讨论了未来可能通过这些技术解决的线粒体生物学中的进一步发展和挑战。