Suppr超能文献

一种用于具有随机不一致效应的网络荟萃分析的治疗设计交互模型。

A design-by-treatment interaction model for network meta-analysis with random inconsistency effects.

作者信息

Jackson Dan, Barrett Jessica K, Rice Stephen, White Ian R, Higgins Julian P T

机构信息

MRC Biostatistics Unit, Cambridge, U.K.

出版信息

Stat Med. 2014 Sep 20;33(21):3639-54. doi: 10.1002/sim.6188. Epub 2014 Apr 29.

Abstract

Network meta-analysis is becoming more popular as a way to analyse multiple treatments simultaneously and, in the right circumstances, rank treatments. A difficulty in practice is the possibility of 'inconsistency' or 'incoherence', where direct evidence and indirect evidence are not in agreement. Here, we develop a random-effects implementation of the recently proposed design-by-treatment interaction model, using these random effects to model inconsistency and estimate the parameters of primary interest. Our proposal is a generalisation of the model proposed by Lumley and allows trials with three or more arms to be included in the analysis. Our methods also facilitate the ranking of treatments under inconsistency. We derive R and I(2) statistics to quantify the impact of the between-study heterogeneity and the inconsistency. We apply our model to two examples.

摘要

网络荟萃分析作为一种同时分析多种治疗方法并在适当情况下对治疗方法进行排序的方式,正变得越来越流行。在实际应用中,一个难点是可能出现“不一致性”或“不连贯性”,即直接证据和间接证据不一致的情况。在此,我们开发了一种最近提出的按治疗交互作用模型的随机效应实现方法,利用这些随机效应来模拟不一致性并估计主要关注参数。我们的提议是对Lumley提出的模型的推广,允许将具有三个或更多组的试验纳入分析。我们的方法还便于在存在不一致性的情况下对治疗方法进行排序。我们推导了R和I(2)统计量,以量化研究间异质性和不一致性的影响。我们将我们的模型应用于两个实例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be5a/4285290/082264252afd/sim0033-3639-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验