Suppr超能文献

用于放射治疗的头颈部区域深度学习CT自动分割的多中心评估。

Multicentre evaluation of deep learning CT autosegmentation of the head and neck region for radiotherapy.

作者信息

Pang Eric Pei Ping, Tan Hong Qi, Wang Fuqiang, Niemelä Jarkko, Bolard Gregory, Ramadan Susan, Kiljunen Timo, Capala Marta, Petit Steven, Seppälä Jan, Vuolukka Kristiina, Kiitam Ingrid, Zolotuhhin Danil, Gershkevitsh Eduard, Lehtiö Kaisa, Nikkinen Juha, Keyriläinen Jani, Mokka Miia, Chua Melvin Lee Kiang

机构信息

Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, 158683, Singapore.

Oncology Academic Clinical Programme, Duke-NUS Graduate Medical School, Singapore, 169857, Singapore.

出版信息

NPJ Digit Med. 2025 May 27;8(1):312. doi: 10.1038/s41746-025-01624-z.

Abstract

This is a multi-institutional study to evaluate a head-and-neck CT auto-segmentation software across seven institutions globally. 11 lymph node levels and 7 organs-at-risk contours were evaluated in a two-phase study design. Time savings were measured in both phases, and the inter-observer variability across the seven institutions was quantified in phase two. Overall time savings were found to be 42% in phase one and 49% in phase two. Lymph node levels IA, IB, III, IVA, and IVB showed no significant time savings, with some centers reporting longer editing times than manual delineation. All the edited ROIs showed reduced inter-observer variability compared to manual segmentation. Our study shows that auto-segmentation plays a crucial role in harmonizing contouring practices globally. However, the clinical benefits of auto-segmentation software vary significantly across ROIs and between clinics. To maximize its potential, institution-specific commissioning is required to optimize the clinical benefits.

摘要

这是一项多机构研究,旨在评估一款头颈部CT自动分割软件在全球七个机构的应用情况。在一项两阶段研究设计中,对11个淋巴结水平和7个危及器官轮廓进行了评估。在两个阶段都测量了时间节省情况,并在第二阶段对七个机构之间的观察者间变异性进行了量化。结果发现,第一阶段总体时间节省为42%,第二阶段为49%。IA、IB、III、IVA和IVB淋巴结水平未显示出显著的时间节省,一些中心报告称编辑时间比手动勾勒更长。与手动分割相比,所有编辑后的感兴趣区域(ROI)的观察者间变异性均有所降低。我们的研究表明,自动分割在全球范围内协调轮廓勾画实践中起着至关重要的作用。然而,自动分割软件的临床益处因ROI和诊所而异。为了最大限度地发挥其潜力,需要进行特定机构的调试以优化临床益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db98/12106707/6fccab5ec191/41746_2025_1624_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验