Meller Laura, Cabeza Mar, Pironon Samuel, Barbet-Massin Morgane, Maiorano Luigi, Georges Damien, Thuiller Wilfried
Metapopulation Research Group, Department of Biosciences, P.O. Box 65, 00014 University of Helsinki, Helsinki, Finland ; Laboratoire d'Ecologie Alpine, UMR-CNRS 5553, Université Joseph Fourier, Grenoble I, BP 53, 38041, Grenoble Cedex 9, France.
Metapopulation Research Group, Department of Biosciences, P.O. Box 65, 00014 University of Helsinki, Helsinki, Finland.
Divers Distrib. 2014 Mar 1;20(3):309-321. doi: 10.1111/ddi.12162.
Conservation planning exercises increasingly rely on species distributions predicted either from one particular statistical model or, more recently, from an ensemble of models (i.e. ensemble forecasting). However, it has not yet been explored how different ways of summarizing ensemble predictions affect conservation planning outcomes. We evaluate these effects and compare commonplace consensus methods, applied before the conservation prioritization phase, to a novel method that applies consensus after reserve selection.
Europe.
We used an ensemble of predicted distributions of 146 Western Palaearctic bird species in alternative ways: four different consensus methods, as well as distributions discounted with variability, were used to produce inputs for spatial conservation prioritization. In addition, we developed and tested a novel method, in which we built 100 datasets by sampling the ensemble of predicted distributions, ran a conservation prioritization analysis on each of them and averaged the resulting priority ranks. We evaluated the conservation outcome against three controls: (i) a null control, based on random ranking of cells; (2) the reference solution, based on an expert-refined dataset; and (3) the independent solution, based on an independent dataset.
Networks based on predicted distributions were more representative of rare species than randomly selected networks. Alternative methods to summarize ensemble predictions differed in representativeness of resulting reserve networks. Our novel method resulted in better representation of rare species than pre-selection consensus methods.
Retaining information about the variation in the predicted distributions throughout the conservation prioritization seems to provide better results than summarizing the predictions before conservation prioritization. Our results highlight the need to understand and consider model-based uncertainty when using predicted distribution data in conservation prioritization.
保护规划工作越来越依赖于通过某一特定统计模型预测的物种分布,或者最近依赖于模型集合(即集合预测)。然而,尚未探讨汇总集合预测的不同方式如何影响保护规划结果。我们评估了这些影响,并将保护优先化阶段之前应用的常见共识方法与一种在保护区选择之后应用共识的新方法进行了比较。
欧洲。
我们以不同方式使用了146种西古北区鸟类物种预测分布的集合:使用四种不同的共识方法以及考虑变异性进行贴现的分布,来生成空间保护优先化的输入数据。此外,我们开发并测试了一种新方法,即通过对预测分布集合进行采样构建100个数据集,对每个数据集进行保护优先化分析,并对所得的优先等级求平均值。我们对照三个控制条件评估了保护结果:(i)基于单元格随机排序的零控制;(2)基于专家完善数据集的参考解决方案;以及(3)基于独立数据集的独立解决方案。
基于预测分布的网络比随机选择的网络更能代表珍稀物种。汇总集合预测的替代方法在所得保护区网络的代表性方面存在差异。我们的新方法比选择前的共识方法能更好地代表珍稀物种。
在整个保护优先化过程中保留有关预测分布变化的信息,似乎比在保护优先化之前汇总预测能产生更好的结果。我们的结果凸显了在保护优先化中使用预测分布数据时理解和考虑基于模型的不确定性的必要性。