Hobbs Brian P, Sargent Daniel J, Carlin Bradley P
Department of Biostatistics, M.D. Anderson Cancer Center, Houston, TX, 77030, USA.
Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA.
Bayesian Anal. 2012 Aug 28;7(3):639-674. doi: 10.1214/12-BA722.
Assessing between-study variability in the context of conventional random-effects meta-analysis is notoriously difficult when incorporating data from only a small number of historical studies. In order to borrow strength, historical and current data are often assumed to be fully homogeneous, but this can have drastic consequences for power and Type I error if the historical information is biased. In this paper, we propose empirical and fully Bayesian modifications of the commensurate prior model (Hobbs et al., 2011) extending Pocock (1976), and evaluate their frequentist and Bayesian properties for incorporating patient-level historical data using general and generalized linear mixed regression models. Our proposed commensurate prior models lead to preposterior admissible estimators that facilitate alternative bias-variance trade-offs than those offered by pre-existing methodologies for incorporating historical data from a small number of historical studies. We also provide a sample analysis of a colon cancer trial comparing time-to-disease progression using a Weibull regression model.
在传统随机效应荟萃分析的背景下,当仅纳入少量历史研究的数据时,评估研究间变异性非常困难。为了增强效力,历史数据和当前数据通常被假定为完全同质,但如果历史信息存在偏差,这可能会对检验效能和I型错误产生严重影响。在本文中,我们提出了对相称先验模型(霍布斯等人,2011年)的实证和完全贝叶斯修正,扩展了波科克(1976年)的模型,并使用一般和广义线性混合回归模型评估其在纳入患者水平历史数据方面的频率主义和贝叶斯属性。我们提出的相称先验模型产生了后验可容许估计量,与现有纳入少量历史研究历史数据的方法相比,有助于实现不同的偏差 - 方差权衡。我们还提供了一个使用威布尔回归模型比较结肠癌试验中疾病进展时间的样本分析。