Lin Hsin-Yu, Slate Elizabeth
Department of Statistics, Florida State University, Tallahassee, USA.
J Biopharm Stat. 2024 Dec 8:1-31. doi: 10.1080/10543406.2024.2429461.
Adaptively incorporating historical information into analyses of current data can improve the precision of inference without requiring additional new observation. Unfortunately, not all borrowing methods are suitable when limited historical studies are available. When a single historical study is available, the power priors control the amount of information to borrow via specification of a weight parameter that discounts the contribution of the historical data in a likelihood combined with current data. We develop a new type of conditional power prior called the historical-bias power prior using an empirical Bayes approach. It relaxes the assumption of the traditional power priors to allow for historical bias. Moreover, our new weight function controls the amount of borrowing and only borrows when historical data satisfy the borrowing criteria. This is achieved by embedding the Frequentist test-then-pool approach in the weight function. Hence, the historical-bias power prior builds a bridge between the Frequentist test-then-pool and the Bayesian power prior. In the simulation, we examine the impact of historical bias on the operating characteristics for borrowing approaches, which has not been discussed in previous literature. The results show that the historical-bias power prior yields accurate estimation and robustly powerful tests for the experimental treatment effect with good type I error control, especially when historical bias exists.
在当前数据分析中自适应地纳入历史信息可以提高推断的精度,而无需额外的新观测。不幸的是,当可用的历史研究有限时,并非所有的借用方法都适用。当只有一项历史研究可用时,功率先验通过指定一个权重参数来控制借用的信息量,该参数会在结合当前数据的似然中对历史数据的贡献进行折扣。我们使用经验贝叶斯方法开发了一种新型的条件功率先验,称为历史偏差功率先验。它放宽了传统功率先验的假设,以允许存在历史偏差。此外,我们的新权重函数控制借用的信息量,并且仅在历史数据满足借用标准时才进行借用。这是通过在权重函数中嵌入频率主义者先检验后合并的方法来实现的。因此,历史偏差功率先验在频率主义者先检验后合并和贝叶斯功率先验之间架起了一座桥梁。在模拟中,我们研究了历史偏差对借用方法操作特性的影响,这在以前的文献中尚未讨论过。结果表明历史偏差功率先验能够对实验治疗效果进行准确估计和稳健有力的检验,同时具有良好的I型错误控制,特别是在存在历史偏差的情况下。