Colwell K A, Ryan D B, Throckmorton C S, Sellers E W, Collins L M
Department of Electrical & Computer Engineering, Duke University, Durham, NC, USA.
Department of Psychology, East Tennessee State University, Johnson City, TN, USA.
J Neurosci Methods. 2014 Jul 30;232:6-15. doi: 10.1016/j.jneumeth.2014.04.009. Epub 2014 May 2.
The P300 Speller brain-computer interface (BCI) allows a user to communicate without muscle activity by reading electrical signals on the scalp via electroencephalogram. Modern BCI systems use multiple electrodes ("channels") to collect data, which has been shown to improve speller accuracy; however, system cost and setup time can increase substantially with the number of channels in use, so it is in the user's interest to use a channel set of modest size. This constraint increases the importance of using an effective channel set, but current systems typically utilize the same channel montage for each user. We examine the effect of active channel selection for individuals on speller performance, using generalized standard feature-selection methods, and present a new channel selection method, termed jumpwise regression, that extends the Stepwise Linear Discriminant Analysis classifier. Simulating the selections of each method on real P300 Speller data, we obtain results demonstrating that active channel selection can improve speller accuracy for most users relative to a standard channel set, with particular benefit for users who experience low performance using the standard set. Of the methods tested, jumpwise regression offers accuracy gains similar to the best-performing feature-selection methods, and is robust enough for online use.
P300 拼写器脑机接口(BCI)允许用户通过脑电图读取头皮上的电信号,在不进行肌肉活动的情况下进行通信。现代 BCI 系统使用多个电极(“通道”)来收集数据,这已被证明可以提高拼写器的准确性;然而,系统成本和设置时间会随着使用的通道数量大幅增加,因此使用规模适中的通道集符合用户的利益。这种限制增加了使用有效通道集的重要性,但当前系统通常为每个用户使用相同的通道组合。我们使用广义标准特征选择方法研究了主动通道选择对个体拼写器性能的影响,并提出了一种新的通道选择方法,称为跳跃式回归,它扩展了逐步线性判别分析分类器。在真实的 P300 拼写器数据上模拟每种方法的选择,我们得到的结果表明,相对于标准通道集,主动通道选择可以提高大多数用户的拼写器准确性,对于使用标准集表现不佳的用户尤其有益。在测试的方法中,跳跃式回归提供的准确性提升与表现最佳的特征选择方法相似,并且足够稳健可用于在线使用。