Suppr超能文献

用于P300拼写器的通道选择方法。

Channel selection methods for the P300 Speller.

作者信息

Colwell K A, Ryan D B, Throckmorton C S, Sellers E W, Collins L M

机构信息

Department of Electrical & Computer Engineering, Duke University, Durham, NC, USA.

Department of Psychology, East Tennessee State University, Johnson City, TN, USA.

出版信息

J Neurosci Methods. 2014 Jul 30;232:6-15. doi: 10.1016/j.jneumeth.2014.04.009. Epub 2014 May 2.

Abstract

The P300 Speller brain-computer interface (BCI) allows a user to communicate without muscle activity by reading electrical signals on the scalp via electroencephalogram. Modern BCI systems use multiple electrodes ("channels") to collect data, which has been shown to improve speller accuracy; however, system cost and setup time can increase substantially with the number of channels in use, so it is in the user's interest to use a channel set of modest size. This constraint increases the importance of using an effective channel set, but current systems typically utilize the same channel montage for each user. We examine the effect of active channel selection for individuals on speller performance, using generalized standard feature-selection methods, and present a new channel selection method, termed jumpwise regression, that extends the Stepwise Linear Discriminant Analysis classifier. Simulating the selections of each method on real P300 Speller data, we obtain results demonstrating that active channel selection can improve speller accuracy for most users relative to a standard channel set, with particular benefit for users who experience low performance using the standard set. Of the methods tested, jumpwise regression offers accuracy gains similar to the best-performing feature-selection methods, and is robust enough for online use.

摘要

P300 拼写器脑机接口(BCI)允许用户通过脑电图读取头皮上的电信号,在不进行肌肉活动的情况下进行通信。现代 BCI 系统使用多个电极(“通道”)来收集数据,这已被证明可以提高拼写器的准确性;然而,系统成本和设置时间会随着使用的通道数量大幅增加,因此使用规模适中的通道集符合用户的利益。这种限制增加了使用有效通道集的重要性,但当前系统通常为每个用户使用相同的通道组合。我们使用广义标准特征选择方法研究了主动通道选择对个体拼写器性能的影响,并提出了一种新的通道选择方法,称为跳跃式回归,它扩展了逐步线性判别分析分类器。在真实的 P300 拼写器数据上模拟每种方法的选择,我们得到的结果表明,相对于标准通道集,主动通道选择可以提高大多数用户的拼写器准确性,对于使用标准集表现不佳的用户尤其有益。在测试的方法中,跳跃式回归提供的准确性提升与表现最佳的特征选择方法相似,并且足够稳健可用于在线使用。

相似文献

1
Channel selection methods for the P300 Speller.
J Neurosci Methods. 2014 Jul 30;232:6-15. doi: 10.1016/j.jneumeth.2014.04.009. Epub 2014 May 2.
2
A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature.
J Neural Eng. 2013 Apr;10(2):026001. doi: 10.1088/1741-2560/10/2/026001. Epub 2013 Jan 31.
3
Toward enhanced P300 speller performance.
J Neurosci Methods. 2008 Jan 15;167(1):15-21. doi: 10.1016/j.jneumeth.2007.07.017. Epub 2007 Aug 1.
4
Pairwise and variance based signal compression algorithm (PVBSC) in the P300 based speller systems using EEG signals.
Comput Methods Programs Biomed. 2019 Jul;176:149-157. doi: 10.1016/j.cmpb.2019.05.011. Epub 2019 May 13.
5
Evaluating brain-computer interface performance using color in the P300 checkerboard speller.
Clin Neurophysiol. 2017 Oct;128(10):2050-2057. doi: 10.1016/j.clinph.2017.07.397. Epub 2017 Aug 8.
6
Concentration on performance with P300-based BCI systems: a matter of interface features.
Appl Ergon. 2016 Jan;52:325-32. doi: 10.1016/j.apergo.2015.08.002. Epub 2015 Aug 28.
7
Electrode subset selection methods for an EEG-based P300 brain-computer interface.
Disabil Rehabil Assist Technol. 2015 May;10(3):216-20. doi: 10.3109/17483107.2014.884174. Epub 2014 Feb 10.
8
Projected accuracy metric for the P300 Speller.
IEEE Trans Neural Syst Rehabil Eng. 2014 Sep;22(5):921-5. doi: 10.1109/TNSRE.2014.2324892.
9
A novel hybrid BCI speller based on the incorporation of SSVEP into the P300 paradigm.
J Neural Eng. 2013 Apr;10(2):026012. doi: 10.1088/1741-2560/10/2/026012. Epub 2013 Feb 21.
10
A region-based two-step P300-based brain-computer interface for patients with amyotrophic lateral sclerosis.
Clin Neurophysiol. 2014 Nov;125(11):2305-2312. doi: 10.1016/j.clinph.2014.03.013. Epub 2014 Mar 24.

引用本文的文献

1
EEG-Based Target Detection Using an RSVP Paradigm under Five Levels of Weak Hidden Conditions.
Brain Sci. 2023 Nov 12;13(11):1583. doi: 10.3390/brainsci13111583.
2
Challenges of brain-computer interface facilitated cognitive assessment for children with cerebral palsy.
Front Hum Neurosci. 2022 Sep 20;16:977042. doi: 10.3389/fnhum.2022.977042. eCollection 2022.
3
Proposals and Comparisons from One-Sensor EEG and EOG Human-Machine Interfaces.
Sensors (Basel). 2021 Mar 22;21(6):2220. doi: 10.3390/s21062220.
4
EEG-based hybrid QWERTY mental speller with high information transfer rate.
Med Biol Eng Comput. 2021 Mar;59(3):633-661. doi: 10.1007/s11517-020-02310-w. Epub 2021 Feb 16.
5
Single-Option P300-BCI Performance Is Affected by Visual Stimulation Conditions.
Sensors (Basel). 2020 Dec 16;20(24):7198. doi: 10.3390/s20247198.
7
Scenario Screen: A Dynamic and Context Dependent P300 Stimulator Screen Aimed at Wheelchair Navigation Control.
Comput Math Methods Med. 2018 Feb 14;2018:7108906. doi: 10.1155/2018/7108906. eCollection 2018.
8
Evaluating brain-computer interface performance using color in the P300 checkerboard speller.
Clin Neurophysiol. 2017 Oct;128(10):2050-2057. doi: 10.1016/j.clinph.2017.07.397. Epub 2017 Aug 8.
9
Investigation of different classifiers and channel configurations of a mobile P300-based brain-computer interface.
Med Biol Eng Comput. 2017 Dec;55(12):2143-2154. doi: 10.1007/s11517-017-1658-2. Epub 2017 May 29.
10
Using the detectability index to predict P300 speller performance.
J Neural Eng. 2016 Dec;13(6):066007. doi: 10.1088/1741-2560/13/6/066007. Epub 2016 Oct 5.

本文引用的文献

1
A robust sensor-selection method for P300 brain-computer interfaces.
J Neural Eng. 2011 Feb;8(1):016001. doi: 10.1088/1741-2560/8/1/016001. Epub 2011 Jan 19.
2
A novel P300-based brain-computer interface stimulus presentation paradigm: moving beyond rows and columns.
Clin Neurophysiol. 2010 Jul;121(7):1109-20. doi: 10.1016/j.clinph.2010.01.030. Epub 2010 Mar 26.
3
P300 Chinese input system based on Bayesian LDA.
Biomed Tech (Berl). 2010 Feb;55(1):5-18. doi: 10.1515/BMT.2010.003.
4
xDAWN algorithm to enhance evoked potentials: application to brain-computer interface.
IEEE Trans Biomed Eng. 2009 Aug;56(8):2035-43. doi: 10.1109/TBME.2009.2012869. Epub 2009 Jan 23.
5
Channel selection and feature projection for cognitive load estimation using ambulatory EEG.
Comput Intell Neurosci. 2007;2007:74895. doi: 10.1155/2007/74895.
6
BCI competition III: dataset II- ensemble of SVMs for BCI P300 speller.
IEEE Trans Biomed Eng. 2008 Mar;55(3):1147-54. doi: 10.1109/TBME.2008.915728.
7
Toward enhanced P300 speller performance.
J Neurosci Methods. 2008 Jan 15;167(1):15-21. doi: 10.1016/j.jneumeth.2007.07.017. Epub 2007 Aug 1.
8
Updating P300: an integrative theory of P3a and P3b.
Clin Neurophysiol. 2007 Oct;118(10):2128-48. doi: 10.1016/j.clinph.2007.04.019. Epub 2007 Jun 18.
9
A comparison of classification techniques for the P300 Speller.
J Neural Eng. 2006 Dec;3(4):299-305. doi: 10.1088/1741-2560/3/4/007. Epub 2006 Oct 26.
10
The Wadsworth BCI Research and Development Program: at home with BCI.
IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):229-33. doi: 10.1109/TNSRE.2006.875577.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验