Suppr超能文献

preQ核糖开关的结构与功能。

Structure and function of preQ riboswitches.

作者信息

Eichhorn Catherine D, Kang Mijeong, Feigon Juli

机构信息

Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA.

Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA.

出版信息

Biochim Biophys Acta. 2014 Oct;1839(10):939-950. doi: 10.1016/j.bbagrm.2014.04.019. Epub 2014 May 4.

Abstract

PreQ riboswitches help regulate the biosynthesis and transport of preQ (7-aminomethyl-7-deazaguanine), a precursor of the hypermodified guanine nucleotide queuosine (Q), in a number of Firmicutes, Proteobacteria, and Fusobacteria. Queuosine is almost universally found at the wobble position of the anticodon in asparaginyl, tyrosyl, histidyl and aspartyl tRNAs, where it contributes to translational fidelity. Two classes of preQ riboswitches have been identified (preQ-I and preQ-II), and structures of examples from both classes have been determined. Both classes form H-type pseudoknots upon preQ binding, each of which has distinct unusual features and modes of preQ recognition. These features include an unusually long loop 2 in preQ-I pseudoknots and an embedded hairpin in loop 3 in preQ-II pseudoknots. PreQ-I riboswitches are also notable for their unusually small aptamer domain, which has been extensively investigated by NMR, X-ray crystallography, FRET, and other biophysical methods. Here we review the discovery, structural biology, ligand specificity, cation interactions, folding, dynamics, and applications to biotechnology of preQ riboswitches. This article is part of a Special Issue entitled: Riboswitches.

摘要

PreQ核糖开关有助于调节7-氨甲基-7-脱氮鸟嘌呤(preQ)的生物合成和转运,preQ是超修饰鸟嘌呤核苷酸queuosine(Q)的前体,在许多厚壁菌门、变形菌门和梭杆菌门细菌中都有发现。Queuosine几乎普遍存在于天冬酰胺酰、酪氨酰、组氨酰和天冬氨酰tRNA反密码子的摆动位置,在那里它有助于提高翻译保真度。已鉴定出两类preQ核糖开关(preQ-I和preQ-II),并确定了这两类开关的实例结构。两类开关在结合preQ后都会形成H型假结,每个假结都有独特的异常特征和preQ识别模式。这些特征包括preQ-I假结中异常长的环2和preQ-II假结中环3中的嵌入发夹结构。PreQ-I核糖开关还因其异常小的适体结构域而引人注目,该结构域已通过核磁共振、X射线晶体学、荧光共振能量转移和其他生物物理方法进行了广泛研究。在此,我们综述了preQ核糖开关的发现、结构生物学、配体特异性、阳离子相互作用、折叠、动力学以及在生物技术中的应用。本文是名为“核糖开关”的特刊的一部分。

相似文献

1
Structure and function of preQ riboswitches.
Biochim Biophys Acta. 2014 Oct;1839(10):939-950. doi: 10.1016/j.bbagrm.2014.04.019. Epub 2014 May 4.
2
Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics.
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):E3485-94. doi: 10.1073/pnas.1503955112. Epub 2015 Jun 23.
3
A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain.
Nat Struct Mol Biol. 2007 Apr;14(4):308-17. doi: 10.1038/nsmb1224. Epub 2007 Mar 25.
4
Structural determinants for ligand capture by a class II preQ1 riboswitch.
Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):E663-71. doi: 10.1073/pnas.1400126111. Epub 2014 Jan 27.
5
Syntheses of (15)N-labeled pre-queuosine nucleobase derivatives.
Beilstein J Org Chem. 2014 Aug 18;10:1914-8. doi: 10.3762/bjoc.10.199. eCollection 2014.
7
Observation of preQ-II riboswitch dynamics using single-molecule FRET.
RNA Biol. 2019 Sep;16(9):1086-1092. doi: 10.1080/15476286.2018.1536591. Epub 2018 Oct 30.
10
Cooperative and directional folding of the preQ1 riboswitch aptamer domain.
J Am Chem Soc. 2011 Mar 30;133(12):4196-9. doi: 10.1021/ja110411m. Epub 2011 Mar 4.

引用本文的文献

3
SMDesigner: a program to design sequence mutations to assess RNA structure.
RNA. 2025 Jun 16;31(7):874-884. doi: 10.1261/rna.080267.124.
6
Thermal titration molecular dynamics (TTMD): shedding light on the stability of RNA-small molecule complexes.
Front Mol Biosci. 2023 Nov 13;10:1294543. doi: 10.3389/fmolb.2023.1294543. eCollection 2023.
7
Synthetic biology tools to promote the folding and function of RNA aptamers in mammalian cells.
RNA Biol. 2023 Jan;20(1):198-206. doi: 10.1080/15476286.2023.2206248.
8
Probing Transient Riboswitch Structures via Single Molecule Accessibility Analysis.
Methods Mol Biol. 2023;2568:37-51. doi: 10.1007/978-1-0716-2687-0_4.
9
Discovering riboswitches: the past and the future.
Trends Biochem Sci. 2023 Feb;48(2):119-141. doi: 10.1016/j.tibs.2022.08.009. Epub 2022 Sep 20.
10
Bioinformatics and Genomic Analyses of the Suitability of Eight Riboswitches for Antibacterial Drug Targets.
Antibiotics (Basel). 2022 Aug 31;11(9):1177. doi: 10.3390/antibiotics11091177.

本文引用的文献

1
Structural determinants for ligand capture by a class II preQ1 riboswitch.
Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):E663-71. doi: 10.1073/pnas.1400126111. Epub 2014 Jan 27.
2
Protonation of trimethylamine N-oxide (TMAO) is required for stabilization of RNA tertiary structure.
Biophys Chem. 2013 Dec 31;184:8-16. doi: 10.1016/j.bpc.2013.08.002. Epub 2013 Aug 17.
3
Synthetic biology of cyanobacteria: unique challenges and opportunities.
Front Microbiol. 2013 Aug 27;4:246. doi: 10.3389/fmicb.2013.00246. eCollection 2013.
6
Tuning a riboswitch response through structural extension of a pseudoknot.
Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):E3256-64. doi: 10.1073/pnas.1304585110. Epub 2013 Aug 12.
7
Urea-induced denaturation of preQ1-riboswitch.
J Am Chem Soc. 2013 Aug 14;135(32):12112-21. doi: 10.1021/ja406019s. Epub 2013 Jul 31.
8
Next generation biofuel engineering in prokaryotes.
Curr Opin Chem Biol. 2013 Jun;17(3):462-71. doi: 10.1016/j.cbpa.2013.03.037. Epub 2013 Apr 23.
9
Structure of a class II preQ1 riboswitch reveals ligand recognition by a new fold.
Nat Chem Biol. 2013 Jun;9(6):353-5. doi: 10.1038/nchembio.1231. Epub 2013 Apr 14.
10
Exploiting preQ(1) riboswitches to regulate ribosomal frameshifting.
ACS Chem Biol. 2013 Apr 19;8(4):733-40. doi: 10.1021/cb300629b. Epub 2013 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验