Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA.
Biophys Chem. 2013 Dec 31;184:8-16. doi: 10.1016/j.bpc.2013.08.002. Epub 2013 Aug 17.
The osmolyte trimethylamine N-oxide (TMAO) stabilizes the tertiary but not the secondary structures of RNA. However, molecular dynamics simulations performed on the PreQ1 riboswitch showed that TMAO destabilizes the tertiary riboswitch structure, leading us to hypothesize that the presence of RNA could result in enhanced population of the protonated form, TMAOP. Constant pH replica exchange simulations showed that a percentage of TMAO is indeed protonated, thus contributing to the stability of the tertiary but not the secondary structure of PreQ1. TMAOP results in an unfavorable dehydration of phosphodiester backbone, which is compensated by electrostatic attraction between TMAOP and the phosphate groups. In addition, TMAOP interacts with specific sites in the tertiary RNA structure, mimicking the behavior of positively charged ions and of the PreQ1 ligand in stabilizing RNA. Finally, we predict that TMAO-induced stabilization of RNA tertiary structures should be strongly pH dependent.
渗透调节剂三甲胺 N-氧化物(TMAO)稳定 RNA 的三级结构而非二级结构。然而,对 PreQ1 核糖开关进行的分子动力学模拟表明 TMAO 会破坏三级核糖开关结构,这使我们假设 RNA 的存在可能导致质子化形式 TMAOP 的丰度增加。恒 pH 复制交换模拟表明 TMAO 确实有一定比例质子化,从而有助于 PreQ1 的三级结构而非二级结构的稳定性。TMAOP 导致磷酸二酯骨架的不利去水,这通过 TMAOP 与磷酸基团之间的静电吸引得到补偿。此外,TMAOP 与三级 RNA 结构中的特定部位相互作用,模拟了带正电荷的离子和 PreQ1 配体稳定 RNA 的行为。最后,我们预测 TMAO 诱导的 RNA 三级结构稳定性应强烈依赖于 pH 值。