Pharmacometrics Research Group, Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, 751 24 , Uppsala, Sweden.
J Pharmacokinet Pharmacodyn. 2014 Jun;41(3):223-38. doi: 10.1007/s10928-014-9359-z. Epub 2014 May 7.
NONMEM is the most widely used software for population pharmacokinetic (PK)-pharmacodynamic (PD) analyses. The latest version, NONMEM 7 (NM7), includes several sampling-based estimation methods in addition to the classical methods. In this study, performance of the estimation methods available in NM7 was investigated with respect to bias, precision, robustness and runtime for a diverse set of PD models. Simulations of 500 data sets from each PD model were reanalyzed with the available estimation methods to investigate bias and precision. Simulations of 100 data sets were used to investigate robustness by comparing final estimates obtained after estimations starting from the true parameter values and initial estimates randomly generated using the CHAIN feature in NM7. Average estimation time for each algorithm and each model was calculated from the runtimes reported by NM7. The method giving the lowest bias and highest precision across models was importance sampling, closely followed by FOCE/LAPLACE and stochastic approximation expectation-maximization. The methods relative robustness differed between models and no method showed clear superior performance. FOCE/LAPLACE was the method with the shortest runtime for all models, followed by iterative two-stage. The Bayesian Markov Chain Monte Carlo method, used in this study for point estimation, performed worst in all tested metrics.
NONMEM 是最广泛用于群体药代动力学(PK)-药效动力学(PD)分析的软件。最新版本 NONMEM 7(NM7)除了经典方法外,还包括几种基于抽样的估计方法。本研究针对各种 PD 模型,考察了 NM7 中可用估计方法的估计偏差、精度、稳健性和运行时间。使用每个 PD 模型的 500 个数据集的模拟数据,通过可用的估计方法重新分析,以研究偏差和精度。使用 100 个数据集的模拟数据,通过比较从真实参数值开始的估计和使用 NM7 中的 CHAIN 功能随机生成的初始估计得出的最终估计,研究稳健性。从 NM7 报告的运行时间计算每种算法和每个模型的平均估计时间。在所有模型中,给出最低偏差和最高精度的方法是重要性抽样,紧随其后的是 FOCE/LAPLACE 和随机逼近期望最大化。方法的相对稳健性因模型而异,没有一种方法表现出明显的优势。对于所有模型,FOCE/LAPLACE 是运行时间最短的方法,其次是迭代两阶段法。在本研究中用于点估计的贝叶斯马尔可夫链蒙特卡罗方法在所有测试指标中表现最差。