Suppr超能文献

不同花期金银花抗炎生物活性标志物的筛选研究

The screening research of anti-inflammatory bioactive markers from different flowering phases of Flos Lonicerae Japonicae.

作者信息

Jiang Min, Han Yan-qi, Zhou Meng-ge, Zhao Hong-zhi, Xiao Xue, Hou Yuan-yuan, Gao Jie, Bai Gang, Luo Guo-an

机构信息

State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.

State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China.

出版信息

PLoS One. 2014 May 8;9(5):e96214. doi: 10.1371/journal.pone.0096214. eCollection 2014.

Abstract

Flos Lonicerae Japonicae (FLJ) is an important cash crop in eastern Asia, and it is an anti-inflammatory Traditional Chinese Medicine. There are large variations in the quality of the marketed FLJ products. To find marker ingredients useful for quality control, a tandem technology integrating ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF), principal component analysis (PCA), heat map analysis and hierarchical cluster analysis coupled with a NF-κB luciferase reporter gene assay were used to identify the different ingredients from the green bud, white bud, flowering stage and leaf stages, as well as to screen the anti-inflammatory activity of FLJ compositions. As flowering progressed, the anti-inflammatory effects of FLJ gradually decreased; however, chlorogenic acid, swertiamarin and sweroside should be used to evaluate the quality of FLJ products.

摘要

金银花是东亚一种重要的经济作物,也是一种具有抗炎作用的传统中药。市售金银花产品的质量存在很大差异。为了找到有助于质量控制的标志性成分,采用了超高效液相色谱/四极杆飞行时间质谱联用技术(UPLC-Q/TOF)、主成分分析(PCA)、热图分析和层次聚类分析,并结合NF-κB荧光素酶报告基因检测,来鉴定绿蕾期、白蕾期、花期和叶片期的不同成分,同时筛选金银花组合物的抗炎活性。随着开花进程的推进,金银花的抗炎作用逐渐降低;然而,绿原酸、獐牙菜苦苷和獐牙菜苷应用于评价金银花产品的质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c30/4014484/2d5bb60e0aa8/pone.0096214.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验