Department of Psychology, University of Massachusetts, Amherst, MA 01003, USA.
J Theor Biol. 2012 Dec 7;314:182-91. doi: 10.1016/j.jtbi.2012.08.038. Epub 2012 Sep 8.
Precise determination of a noisy biological oscillator's period from limited experimental data can be challenging. The common practice is to calculate a single number (a point estimate) for the period of a particular time course. Uncertainty is inherent in any statistical estimator applied to noisy data, so our confidence in such point estimates depends on the quality and quantity of the data. Ideally, a period estimation method should both produce an accurate point estimate of the period and measure the uncertainty in that point estimate. A variety of period estimation methods are known, but few assess the uncertainty of the estimates, and a measure of uncertainty is rarely reported in the experimental literature. We compare the accuracy of point estimates using six common methods, only one of which can also produce uncertainty measures. We then illustrate the advantages of a new Bayesian method for estimating period, which outperforms the other six methods in accuracy of point estimates for simulated data and also provides a measure of uncertainty. We apply this method to analyze circadian oscillations of gene expression in individual mouse fibroblast cells and compute the number of cells and sampling duration required to reduce the uncertainty in period estimates to a desired level. This analysis indicates that, due to the stochastic variability of noisy intracellular oscillators, achieving a narrow margin of error can require an impractically large number of cells. In addition, we use a hierarchical model to determine the distribution of intrinsic cell periods, thereby separating the variability due to stochastic gene expression within each cell from the variability in period across the population of cells.
从有限的实验数据中精确确定嘈杂的生物振荡器的周期可能具有挑战性。常见的做法是计算特定时间过程的周期的单个数字(点估计)。应用于嘈杂数据的任何统计估计都存在固有的不确定性,因此我们对点估计的置信度取决于数据的质量和数量。理想情况下,周期估计方法既应该对周期进行准确的点估计,又应该测量该点估计的不确定性。有多种周期估计方法,但很少有方法可以评估估计的不确定性,并且在实验文献中很少报告不确定性的度量。我们比较了使用六种常用方法的点估计的准确性,只有一种方法可以同时产生不确定性度量。然后,我们说明了一种新的贝叶斯方法用于估计周期的优势,该方法在模拟数据的点估计准确性方面优于其他六种方法,并且还提供了不确定性的度量。我们将该方法应用于分析单个小鼠成纤维细胞中基因表达的昼夜节律振荡,并计算了减少周期估计不确定性所需的细胞数量和采样持续时间,以达到所需的水平。该分析表明,由于嘈杂的细胞内振荡器的随机可变性,要达到较小的误差幅度可能需要大量不切实际的细胞。此外,我们使用层次模型来确定固有细胞周期的分布,从而将每个细胞内随机基因表达的可变性与细胞群体中周期的可变性区分开来。