Suppr超能文献

GroEL/ES 热休克蛋白复合物调节 TIM 桶状结构域折叠的机制并加速其折叠速率。

GroEL/ES chaperonin modulates the mechanism and accelerates the rate of TIM-barrel domain folding.

机构信息

Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany.

Department of Chemistry & Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston MA 02115-5000, USA.

出版信息

Cell. 2014 May 8;157(4):922-934. doi: 10.1016/j.cell.2014.03.038.

Abstract

The GroEL/ES chaperonin system functions as a protein folding cage. Many obligate substrates of GroEL share the (βα)8 TIM-barrel fold, but how the chaperonin promotes folding of these proteins is not known. Here, we analyzed the folding of DapA at peptide resolution using hydrogen/deuterium exchange and mass spectrometry. During spontaneous folding, all elements of the DapA TIM barrel acquire structure simultaneously in a process associated with a long search time. In contrast, GroEL/ES accelerates folding more than 30-fold by catalyzing segmental structure formation in the TIM barrel. Segmental structure formation is also observed during the fast spontaneous folding of a structural homolog of DapA from a bacterium that lacks GroEL/ES. Thus, chaperonin independence correlates with folding properties otherwise enforced by protein confinement in the GroEL/ES cage. We suggest that folding catalysis by GroEL/ES is required by a set of proteins to reach native state at a biologically relevant timescale, avoiding aggregation or degradation.

摘要

GroEL/ES 伴护素系统作为一种蛋白质折叠笼发挥作用。许多 GroEL 的必需底物都具有 (βα)8 TIM 桶折叠结构,但伴护素如何促进这些蛋白质的折叠尚不清楚。在这里,我们使用氢/氘交换和质谱法在肽分辨率水平上分析了 DapA 的折叠。在自发折叠过程中,DapA TIM 桶的所有元件都同时获得结构,这一过程与长时间的搜索时间有关。相比之下,GroEL/ES 通过催化 TIM 桶中的分段结构形成,将折叠速度提高了 30 多倍。在一种缺乏 GroEL/ES 的细菌的 DapA 结构同源物的快速自发折叠过程中,也观察到了分段结构的形成。因此,伴护素独立性与蛋白质在 GroEL/ES 笼中的限制所强制的折叠特性相关。我们认为,一组蛋白质需要 GroEL/ES 的折叠催化作用,才能在生物相关的时间尺度上达到天然状态,避免聚集或降解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/561c/4071350/67656e2a511f/nihms-601153-f0001.jpg

相似文献

5
Productive folding of a tethered protein in the chaperonin GroEL-GroES cage.束缚态蛋白质在伴侣蛋白GroEL - GroES笼中的有效折叠。
Biochem Biophys Res Commun. 2015 Oct 9;466(1):72-5. doi: 10.1016/j.bbrc.2015.08.108. Epub 2015 Aug 29.
9
Retardation of Folding Rates of Substrate Proteins in the Nanocage of GroEL.GroEL 纳米笼中底物蛋白折叠速率的降低。
Biochemistry. 2021 Feb 16;60(6):460-464. doi: 10.1021/acs.biochem.0c00903. Epub 2021 Jan 19.

引用本文的文献

1
Rigorous Analysis of Multimodal HDX-MS Spectra.多模态氢氘交换质谱(HDX-MS)谱图的严格分析
J Am Soc Mass Spectrom. 2025 Feb 5;36(2):416-423. doi: 10.1021/jasms.4c00471. Epub 2025 Jan 21.
10
G-quadruplexes rescuing protein folding.四链体挽救蛋白质折叠。
Proc Natl Acad Sci U S A. 2023 May 16;120(20):e2216308120. doi: 10.1073/pnas.2216308120. Epub 2023 May 8.

本文引用的文献

1
Protein Folding: A Perspective from Theory and Experiment.蛋白质折叠:理论与实验视角
Angew Chem Int Ed Engl. 1998 Apr 20;37(7):868-893. doi: 10.1002/(SICI)1521-3773(19980420)37:7<868::AID-ANIE868>3.0.CO;2-H.
7
Structure and allostery of the chaperonin GroEL.伴侣蛋白 GroEL 的结构与别构调控。
J Mol Biol. 2013 May 13;425(9):1476-87. doi: 10.1016/j.jmb.2012.11.028. Epub 2012 Nov 24.
8
DnaK functions as a central hub in the E. coli chaperone network.DnaK 在大肠杆菌伴侣蛋白网络中充当中心枢纽。
Cell Rep. 2012 Mar 29;1(3):251-64. doi: 10.1016/j.celrep.2011.12.007. Epub 2012 Mar 8.
10
Hydrophobic forces and the length limit of foldable protein domains.疏水力与可折叠蛋白结构域的长度限制。
Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):9851-6. doi: 10.1073/pnas.1207382109. Epub 2012 Jun 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验