Suppr超能文献

鉴定混合谱系白血病1(MLL1)蛋白作为热休克因子1(HSF1)蛋白在热休克蛋白90(HSP90)抑制反应中的共激活因子。

Identification of mixed lineage leukemia 1(MLL1) protein as a coactivator of heat shock factor 1(HSF1) protein in response to heat shock protein 90 (HSP90) inhibition.

作者信息

Chen Yaoyu, Chen Jinyun, Yu Jianjun, Yang Guizhi, Temple Emilia, Harbinski Fred, Gao Hui, Wilson Christopher, Pagliarini Raymond, Zhou Wenlai

机构信息

From the Departments of Oncology.

the Department of Oncology, Novartis Institutes for Biomedical Research, Emeryville, California 94608.

出版信息

J Biol Chem. 2014 Jul 4;289(27):18914-27. doi: 10.1074/jbc.M114.574053. Epub 2014 May 15.

Abstract

Heat shock protein 90 (HSP90) inhibition inhibits cancer cell proliferation through depleting client oncoproteins and shutting down multiple oncogenic pathways. Therefore, it is an attractive strategy for targeting human cancers. Several HSP90 inhibitors, including AUY922 and STA9090, show promising effects in clinical trials. However, the efficacy of HSP90 inhibitors may be limited by heat shock factor 1 (HSF1)-mediated feedback mechanisms. Here, we identify, through an siRNA screen, that the histone H3 lysine 4 methyltransferase MLL1 functions as a coactivator of HSF1 in response to HSP90 inhibition. MLL1 is recruited to the promoters of HSF1 target genes and regulates their expression in response to HSP90 inhibition. In addition, a striking combination effect is observed when MLL1 depletion is combined with HSP90 inhibition in various human cancer cell lines and tumor models. Thus, targeting MLL1 may block a HSF1-mediated feedback mechanism induced by HSP90 inhibition and provide a new avenue to enhance HSP90 inhibitor activity in human cancers.

摘要

热休克蛋白90(HSP90)抑制通过消耗客户癌蛋白和关闭多个致癌途径来抑制癌细胞增殖。因此,它是一种针对人类癌症的有吸引力的策略。几种HSP90抑制剂,包括AUY922和STA9090,在临床试验中显示出有前景的效果。然而,HSP90抑制剂的疗效可能受到热休克因子1(HSF1)介导的反馈机制的限制。在此,我们通过小干扰RNA筛选确定,组蛋白H3赖氨酸4甲基转移酶MLL1在响应HSP90抑制时作为HSF1的共激活因子发挥作用。MLL1被招募到HSF1靶基因的启动子上,并响应HSP90抑制调节它们的表达。此外,在各种人类癌细胞系和肿瘤模型中,当MLL1缺失与HSP90抑制联合时,观察到显著的联合效应。因此,靶向MLL1可能阻断由HSP90抑制诱导的HSF1介导的反馈机制,并为增强HSP90抑制剂在人类癌症中的活性提供一条新途径。

相似文献

2
Targeting HSF1 sensitizes cancer cells to HSP90 inhibition.
Oncotarget. 2013 Jun;4(6):816-29. doi: 10.18632/oncotarget.991.
3
Heat shock factor 1 confers resistance to Hsp90 inhibitors through p62/SQSTM1 expression and promotion of autophagic flux.
Biochem Pharmacol. 2014 Feb 1;87(3):445-55. doi: 10.1016/j.bcp.2013.11.014. Epub 2013 Nov 28.
4
A screen for enhancers of clearance identifies huntingtin as a heat shock protein 90 (Hsp90) client protein.
J Biol Chem. 2012 Jan 6;287(2):1406-14. doi: 10.1074/jbc.M111.294801. Epub 2011 Nov 28.
6
Targeting HSF1 disrupts HSP90 chaperone function in chronic lymphocytic leukemia.
Oncotarget. 2015 Oct 13;6(31):31767-79. doi: 10.18632/oncotarget.5167.
7
Molecular stress-inducing compounds increase osteoclast formation in a heat shock factor 1 protein-dependent manner.
J Biol Chem. 2014 May 9;289(19):13602-14. doi: 10.1074/jbc.M113.530626. Epub 2014 Apr 1.
8
NZ28-induced inhibition of HSF1, SP1 and NF-κB triggers the loss of the natural killer cell-activating ligands MICA/B on human tumor cells.
Cancer Immunol Immunother. 2015 May;64(5):599-608. doi: 10.1007/s00262-015-1665-9. Epub 2015 Feb 18.

引用本文的文献

2
Mechanisms tailoring the expression of heat shock proteins to proteostasis challenges.
J Biol Chem. 2022 May;298(5):101796. doi: 10.1016/j.jbc.2022.101796. Epub 2022 Mar 3.
3
The pericentromeric protein shugoshin 2 cooperates with HSF1 in heat shock response and RNA Pol II recruitment.
EMBO J. 2019 Dec 16;38(24):e102566. doi: 10.15252/embj.2019102566. Epub 2019 Oct 28.
6
Photothermal therapy of glioblastoma multiforme using multiwalled carbon nanotubes optimized for diffusion in extracellular space.
ACS Biomater Sci Eng. 2016 Jun 13;2(6):963-976. doi: 10.1021/acsbiomaterials.6b00052. Epub 2016 May 9.
7
Transcriptional control of non-apoptotic developmental cell death in C. elegans.
Cell Death Differ. 2016 Dec;23(12):1985-1994. doi: 10.1038/cdd.2016.77. Epub 2016 Jul 29.

本文引用的文献

1
Mechanisms of Resistance to Hsp90 Inhibitor Drugs: A Complex Mosaic Emerges.
Pharmaceuticals (Basel). 2011 Oct 25;4(11):1400-1422. doi: 10.3390/ph4111400.
2
Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia.
Mol Cell. 2014 Jan 23;53(2):247-61. doi: 10.1016/j.molcel.2013.12.001. Epub 2014 Jan 2.
3
Targeting HSF1 sensitizes cancer cells to HSP90 inhibition.
Oncotarget. 2013 Jun;4(6):816-29. doi: 10.18632/oncotarget.991.
4
The Mediator complex and transcription elongation.
Biochim Biophys Acta. 2013 Jan;1829(1):69-75. doi: 10.1016/j.bbagrm.2012.08.017. Epub 2012 Sep 13.
5
Structural insights into inhibition of the bivalent menin-MLL interaction by small molecules in leukemia.
Blood. 2012 Nov 29;120(23):4461-9. doi: 10.1182/blood-2012-05-429274. Epub 2012 Aug 30.
8
Roles for histone H3K4 methyltransferase activities during immunoglobulin class-switch recombination.
Biochim Biophys Acta. 2012 Jul;1819(7):733-8. doi: 10.1016/j.bbagrm.2012.01.019. Epub 2012 Feb 12.
9
Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia.
Nat Chem Biol. 2012 Jan 29;8(3):277-84. doi: 10.1038/nchembio.773.
10
The novel oral Hsp90 inhibitor NVP-HSP990 exhibits potent and broad-spectrum antitumor activities in vitro and in vivo.
Mol Cancer Ther. 2012 Mar;11(3):730-9. doi: 10.1158/1535-7163.MCT-11-0667. Epub 2012 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验