Suppr超能文献

正常受试者和癌症患者尿液的同步发光光谱表征

Synchronous luminescence spectroscopic characterization of urine of normal subjects and cancer patients.

作者信息

Rajasekaran Ramu, Aruna Prakasarao, Koteeswaran Dornadula, Baludavid Munusamy, Ganesan Singaravelu

机构信息

Department of Medical Physics, Anna University, Chennai, 600025, India.

出版信息

J Fluoresc. 2014 Jul;24(4):1199-205. doi: 10.1007/s10895-014-1401-4. Epub 2014 May 16.

Abstract

Urine is one of the diagnostically potential bio fluids, as it contains many metabolites and some of them are native fluorophores. These fluorophores distribution and the physiochemical properties may vary during any metabolic change or at different pathologic conditions. Since urine is a multicomponent fluid, synchronous luminescence technique, a powerful tool has been adopted to analyse multicomponents in single spectrum and to resolve emission spectrum without much of photobleaching of fluorophores. In this study, urine samples of both normal subjects and cancer patients were characterised using synchronous luminescence spectroscopy with a Stokes shift of 20 nm. Different ratio parameters were calculated from the intensity values of the synchronous luminescence spectra and they were used as input variables for a multiple linear discriminant analysis across normal and cancer groups. The stepwise linear discriminant analysis classifies 90.3% of the original grouped cases and 88.6% of the cross-validated grouped cases correctly.

摘要

尿液是具有诊断潜力的生物流体之一,因为它含有许多代谢物,其中一些是天然荧光团。在任何代谢变化或不同病理状况下,这些荧光团的分布和理化性质可能会有所不同。由于尿液是一种多组分流体,同步发光技术作为一种强大的工具,已被用于在单光谱中分析多组分,并在荧光团很少发生光漂白的情况下解析发射光谱。在本研究中,使用斯托克斯位移为20 nm的同步发光光谱对正常受试者和癌症患者的尿液样本进行了表征。从同步发光光谱的强度值计算出不同的比率参数,并将其用作正常组和癌症组之间多元线性判别分析的输入变量。逐步线性判别分析正确分类了90.3%的原始分组病例和88.6%的交叉验证分组病例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验