University Medical Center Göttingen, Department of Medical Statistics, Humboldtallee 32, D-37073 Göttingen, Germany.
Biology (Basel). 2014 Feb 7;3(1):85-100. doi: 10.3390/biology3010085.
Putting new findings into the context of available literature knowledge is one approach to deal with the surge of high-throughput data results. Furthermore, prior knowledge can increase the performance and stability of bioinformatic algorithms, for example, methods for network reconstruction. In this review, we examine software packages for the statistical computing framework R, which enable the integration of pathway data for further bioinformatic analyses. Different approaches to integrate and visualize pathway data are identified and packages are stratified concerning their features according to a number of different aspects: data import strategies, the extent of available data, dependencies on external tools, integration with further analysis steps and visualization options are considered. A total of 12 packages integrating pathway data are reviewed in this manuscript. These are supplemented by five R-specific packages for visualization and six connector packages, which provide access to external tools.
将新发现置于现有文献知识的背景下是处理高通量数据结果激增的一种方法。此外,先验知识可以提高生物信息学算法的性能和稳定性,例如,用于网络重建的方法。在这篇综述中,我们研究了用于统计计算框架 R 的软件包,这些软件包可实现途径数据的集成,以进行进一步的生物信息学分析。确定了不同的方法来整合和可视化途径数据,并根据许多不同方面对软件包进行分层:数据导入策略、可用数据的范围、对外部工具的依赖、与进一步分析步骤的集成以及可视化选项。本文综述了 12 个整合途径数据的软件包。此外,还补充了 5 个用于可视化的 R 专用软件包和 6 个连接器软件包,这些软件包提供了对外部工具的访问。