Suppr超能文献

通过与回声状态网络的人机交互探索语法结构的习得和生成。

Exploring the acquisition and production of grammatical constructions through human-robot interaction with echo state networks.

机构信息

Stem Cell and Brain Research Institute, INSERM U846 Bron, France ; Université de Lyon, Université Lyon I Lyon, France.

Stem Cell and Brain Research Institute, INSERM U846 Bron, France ; Université de Lyon, Université Lyon I Lyon, France ; Centre National de la Recherche Scientifique Bron, France.

出版信息

Front Neurorobot. 2014 May 6;8:16. doi: 10.3389/fnbot.2014.00016. eCollection 2014.

Abstract

One of the principal functions of human language is to allow people to coordinate joint action. This includes the description of events, requests for action, and their organization in time. A crucial component of language acquisition is learning the grammatical structures that allow the expression of such complex meaning related to physical events. The current research investigates the learning of grammatical constructions and their temporal organization in the context of human-robot physical interaction with the embodied sensorimotor humanoid platform, the iCub. We demonstrate three noteworthy phenomena. First, a recurrent network model is used in conjunction with this robotic platform to learn the mappings between grammatical forms and predicate-argument representations of meanings related to events, and the robot's execution of these events in time. Second, this learning mechanism functions in the inverse sense, i.e., in a language production mode, where rather than executing commanded actions, the robot will describe the results of human generated actions. Finally, we collect data from naïve subjects who interact with the robot via spoken language, and demonstrate significant learning and generalization results. This allows us to conclude that such a neural language learning system not only helps to characterize and understand some aspects of human language acquisition, but also that it can be useful in adaptive human-robot interaction.

摘要

人类语言的主要功能之一是允许人们协调联合行动。这包括对事件的描述、对行动的请求以及它们在时间上的组织。语言习得的一个关键组成部分是学习允许表达与物理事件相关的复杂意义的语法结构。目前的研究调查了在与具身感觉运动人形平台 iCub 的人机物理交互背景下学习语法结构及其时间组织的情况。我们展示了三个值得注意的现象。首先,使用递归网络模型与这个机器人平台相结合,学习与事件相关的意义的语法形式和谓词-论元表示之间的映射,以及机器人在时间上执行这些事件的方式。其次,这种学习机制具有相反的作用,即语言产生模式,在这种模式中,机器人将描述人类生成的动作的结果,而不是执行命令的动作。最后,我们从通过口语与机器人互动的天真参与者那里收集数据,并展示了显著的学习和泛化结果。这使我们得出结论,这样的神经语言学习系统不仅有助于描述和理解人类语言习得的某些方面,而且在自适应人机交互中也可能有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8a/4018555/c445f4b5c50b/fnbot-08-00016-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验