Suppr超能文献

右侧前额叶皮质参与反应抑制的脑磁图特征

Magnetoencephalographic signatures of right prefrontal cortex involvement in response inhibition.

作者信息

Hege Maike A, Preissl Hubert, Stingl Krunoslav T

机构信息

Institute of Medical Psychology and Behavioural Neurobiology, fMEG Center, University of Tübingen, 72076, Tübingen, Germany; Graduate School of Neural and Behavioural Sciences, International Max Planck Research School, University of Tübingen, 72074, Tübingen, Germany.

出版信息

Hum Brain Mapp. 2014 Oct;35(10):5236-48. doi: 10.1002/hbm.22546. Epub 2014 May 21.

Abstract

The prefrontal cortex has a pivotal role in top-down control of cognitive and sensory functions. In complex go-nogo tasks, the right dorsolateral prefrontal cortex is considered to be important for guiding the response inhibition. However, little is known about the temporal dynamics and neurophysiological nature of this activity. To address this issue, we recorded magnetoencephalographic brain activity in 20 women during a visual go-nogo task. The right dorsolateral prefrontal cortex showed an increase for the amplitude of the event-related fields and an increase in induced alpha frequency band activity for nogo in comparison to go trials. The peak of this prefrontal activity preceded the mean reaction time of around 360 ms for go trials, and thus supports the proposed role of right dorsolateral prefrontal cortex in gating the response inhibition and further suggests that right prefrontal alpha band activity might be involved in this gating. However, the results in right dorsolateral prefrontal cortex were similar for both successful and unsuccessful response inhibition. In these conditions, we instead observed pre- and poststimulus differences in alpha band activity in occipital and central areas. Thus, successful response inhibition seemed to additionally depend on prestimulus anticipatory alpha desynchronization in sensory areas as it was reduced prior to unsuccessful response inhibition. In conclusion, we suggest a role for functional inhibition by alpha synchronization not only in sensory, but also in prefrontal areas.

摘要

前额叶皮质在认知和感觉功能的自上而下控制中起关键作用。在复杂的“去/不去”任务中,右侧背外侧前额叶皮质被认为对引导反应抑制很重要。然而,关于这种活动的时间动态和神经生理性质知之甚少。为了解决这个问题,我们在20名女性进行视觉“去/不去”任务期间记录了脑磁图脑活动。与“去”试验相比,右侧背外侧前额叶皮质在“不去”试验中事件相关场的振幅增加,并且诱发的α频段活动增加。这种前额叶活动的峰值先于“去”试验平均反应时间约360毫秒,因此支持了右侧背外侧前额叶皮质在控制反应抑制中的作用,并进一步表明右侧前额叶α频段活动可能参与了这种控制。然而,成功和不成功的反应抑制在右侧背外侧前额叶皮质的结果相似。在这些情况下,我们反而观察到枕叶和中央区域α频段活动在刺激前和刺激后的差异。因此,成功的反应抑制似乎还额外依赖于感觉区域刺激前的预期α去同步化,因为在不成功的反应抑制之前它会减少。总之,我们认为α同步化的功能抑制不仅在感觉区域,而且在前额叶区域都起作用。

相似文献

1
Magnetoencephalographic signatures of right prefrontal cortex involvement in response inhibition.
Hum Brain Mapp. 2014 Oct;35(10):5236-48. doi: 10.1002/hbm.22546. Epub 2014 May 21.
2
Addressing the selective role of distinct prefrontal areas in response suppression: A study with brain tumor patients.
Neuropsychologia. 2017 Jun;100:120-130. doi: 10.1016/j.neuropsychologia.2017.04.018. Epub 2017 Apr 12.
4
How perceptual ambiguity affects response inhibition processes.
J Neurophysiol. 2019 Aug 1;122(2):500-511. doi: 10.1152/jn.00298.2019. Epub 2019 Jun 5.
5
Low-Frequency Oscillations in Mid-rostral Dorsolateral Prefrontal Cortex Support Response Inhibition.
J Neurosci. 2024 Oct 2;44(40):e0122242024. doi: 10.1523/JNEUROSCI.0122-24.2024.
6
Response inhibition in adults and teenagers: spatiotemporal differences in the prefrontal cortex.
Brain Cogn. 2012 Jun;79(1):49-59. doi: 10.1016/j.bandc.2011.12.011. Epub 2012 Feb 9.
7
When 'go' and 'nogo' are equally frequent: ERP components and cortical tomography.
Eur J Neurosci. 2004 Nov;20(9):2483-8. doi: 10.1111/j.1460-9568.2004.03683.x.
8
The "when" and "where" of the interplay between attentional capture and response inhibition during a Go/NoGo variant.
Neuroimage. 2021 May 1;231:117837. doi: 10.1016/j.neuroimage.2021.117837. Epub 2021 Feb 9.
9
Cortical neurodynamics of inhibitory control.
J Neurosci. 2014 Jul 16;34(29):9551-61. doi: 10.1523/JNEUROSCI.4889-13.2014.
10
The role of left and right dorsolateral prefrontal cortex in semantic processing: A transcranial direct current stimulation study.
Neuropsychologia. 2016 Oct;91:480-489. doi: 10.1016/j.neuropsychologia.2016.08.019. Epub 2016 Aug 20.

引用本文的文献

1
Machine learning-based viewers' preference prediction on social awareness advertisements using EEG.
Front Hum Neurosci. 2025 Jun 13;19:1542574. doi: 10.3389/fnhum.2025.1542574. eCollection 2025.
2
BCI-Based Consumers' Choice Prediction From EEG Signals: An Intelligent Neuromarketing Framework.
Front Hum Neurosci. 2022 May 26;16:861270. doi: 10.3389/fnhum.2022.861270. eCollection 2022.
3
Ignore the faces: Neural characterisation of emotional inhibition from childhood to adulthood using MEG.
Hum Brain Mapp. 2021 Dec 1;42(17):5747-5760. doi: 10.1002/hbm.25651. Epub 2021 Sep 28.
5
Visuomotor Activation of Inhibition-Processing in Pediatric Obsessive Compulsive Disorder: A Magnetoencephalography Study.
Front Psychiatry. 2021 Apr 29;12:632736. doi: 10.3389/fpsyt.2021.632736. eCollection 2021.
6
Using subjective expectations to model the neural underpinnings of proactive inhibition.
Eur J Neurosci. 2019 Jun;49(12):1575-1586. doi: 10.1111/ejn.14308. Epub 2019 Jan 1.
8
Response Inhibition Is Facilitated by a Change to Red Over Green in the Stop Signal Paradigm.
Front Hum Neurosci. 2017 Jan 4;10:655. doi: 10.3389/fnhum.2016.00655. eCollection 2016.
9
Attention deficit hyperactivity disorder and disordered eating behaviors: links, risks, and challenges faced.
Neuropsychiatr Dis Treat. 2016 Mar 3;12:571-9. doi: 10.2147/NDT.S68763. eCollection 2016.
10
Event-related fields evoked by vocal response inhibition: a comparison of younger and older adults.
Exp Brain Res. 2016 Jun;234(6):1525-35. doi: 10.1007/s00221-016-4555-2. Epub 2016 Jan 28.

本文引用的文献

1
Alpha-band suppression in the visual word form area as a functional bottleneck to consciousness.
Neuroimage. 2013 Sep;78:33-45. doi: 10.1016/j.neuroimage.2013.04.020. Epub 2013 Apr 13.
2
Spatiotemporal characterization of response inhibition.
Neuroimage. 2013 Aug 1;76:272-81. doi: 10.1016/j.neuroimage.2013.03.011. Epub 2013 Mar 20.
3
Synchronous oscillatory neural ensembles for rules in the prefrontal cortex.
Neuron. 2012 Nov 21;76(4):838-846. doi: 10.1016/j.neuron.2012.09.029.
4
α-band oscillations, attention, and controlled access to stored information.
Trends Cogn Sci. 2012 Dec;16(12):606-17. doi: 10.1016/j.tics.2012.10.007. Epub 2012 Nov 7.
5
Alpha oscillations serve to protect working memory maintenance against anticipated distracters.
Curr Biol. 2012 Oct 23;22(20):1969-74. doi: 10.1016/j.cub.2012.08.029. Epub 2012 Oct 4.
6
Two brakes are better than one: the neural bases of inhibitory control of motor memory traces.
Neuroimage. 2013 Jan 15;65:52-8. doi: 10.1016/j.neuroimage.2012.09.048. Epub 2012 Sep 29.
7
Pre-cue fronto-occipital alpha phase and distributed cortical oscillations predict failures of cognitive control.
J Neurosci. 2012 May 16;32(20):7034-41. doi: 10.1523/JNEUROSCI.5198-11.2012.
8
Spectral fingerprints of large-scale neuronal interactions.
Nat Rev Neurosci. 2012 Jan 11;13(2):121-34. doi: 10.1038/nrn3137.
9
FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data.
Comput Intell Neurosci. 2011;2011:156869. doi: 10.1155/2011/156869. Epub 2010 Dec 23.
10
Shaping functional architecture by oscillatory alpha activity: gating by inhibition.
Front Hum Neurosci. 2010 Nov 4;4:186. doi: 10.3389/fnhum.2010.00186. eCollection 2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验