Millennium Nucleus for Regenerative Biology, Department of Physiology, Faculty of Biology, Pontificia Universidad Catolica de Chile, Santiago 8331150, Chile.
Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 20208, and.
J Neurosci. 2014 May 21;34(21):7179-89. doi: 10.1523/JNEUROSCI.4784-13.2014.
Axonal degeneration represents an early pathological event in neurodegeneration, constituting an important target for neuroprotection. Regardless of the initial injury, which could be toxic, mechanical, metabolic, or genetic, degeneration of axons shares a common mechanism involving mitochondrial dysfunction and production of reactive oxygen species. Critical steps in this degenerative process are still unknown. Here we show that calcium release from the axonal endoplasmic reticulum (ER) through ryanodine and IP3 channels activates the mitochondrial permeability transition pore and contributes to axonal degeneration triggered by both mechanical and toxic insults in ex vivo and in vitro mouse and rat model systems. These data reveal a critical and early ER-dependent step during axonal degeneration, providing novel targets for axonal protection in neurodegenerative conditions.
轴突变性是神经退行性变的早期病理事件,是神经保护的重要靶点。无论最初的损伤是毒性、机械性、代谢性还是遗传性的,轴突变性都有一个共同的机制,涉及线粒体功能障碍和活性氧的产生。这个退行性过程中的关键步骤仍不清楚。在这里,我们发现通过 Ryanodine 和 IP3 通道从轴突内质网(ER)释放钙会激活线粒体通透性转换孔,并有助于体外和体内的体外和体内小鼠和大鼠模型系统中机械和毒性损伤触发的轴突变性。这些数据揭示了轴突变性过程中一个关键的、早期的 ER 依赖性步骤,为神经退行性疾病中的轴突保护提供了新的靶点。