Center for Molecular Design and Biomimetics, The Biodesign Institute, Department of Chemistry and Biochemistry , Arizona State University , Tempe , Arizona 85287 , United States.
Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China.
ACS Appl Mater Interfaces. 2019 Apr 17;11(15):13874-13880. doi: 10.1021/acsami.8b07101. Epub 2018 Jun 25.
Three-dimensional (3D) DNA nanostructures facilitate the directed self-assembly of various objects with designed patterns with nanometer scale addressability. Here, we report the enhancement of cytochrome c (cyt c) redox activity by using a designed 3D DNA nanostructure attached to a gold electrode to spatially control the position of cyt c within the tetrahedral framework. Charged encapsulation and spatial control result in the significantly increased redox potential and enhanced electron transfer of this redox protein when compared to cyt c directly adsorbed on the gold surface. Two different protein attachment sites on one double stranded edge of a DNA tetrahedron were used to position cyt c inside and outside of the cage. Cyt c at both binding sites show similar redox potential shift and only slight difference in the electron transfer rate, both orders of magnitude faster than the cases when the protein was directly deposited on the gold electrode, likely due to an effective electron transfer pathway provided by the stabilization effect of the protein created by the DNA framework. This study shows great potential of using structural DNA nanotechnology for spatial control of protein positioning on electrode, which opens new routes to engineer redox proteins and interface microelectronic devices with biological function.
三维 (3D) DNA 纳米结构可通过设计图案的定向自组装各种物体,具有纳米级寻址能力。在这里,我们报告了通过使用附着在金电极上的设计 3D DNA 纳米结构来增强细胞色素 c(cyt c)的氧化还原活性,以空间控制 cyt c 在四面体型框架内的位置。与直接吸附在金表面的 cyt c 相比,带电荷的包封和空间控制导致这种氧化还原蛋白的氧化还原电位显著增加和电子转移增强。在 DNA 四面体的一条双链边缘上使用两个不同的蛋白质附着位点将 cyt c 定位在笼内和笼外。两个结合位点的 cyt c 均显示出相似的氧化还原电位移动,电子转移速率仅略有差异,均比蛋白质直接沉积在金电极上的情况快几个数量级,这可能是由于 DNA 框架对蛋白质的稳定作用提供了有效的电子转移途径。这项研究表明,结构 DNA 纳米技术在电极上蛋白质定位的空间控制方面具有很大的潜力,为工程化氧化还原蛋白和具有生物功能的接口微电子设备开辟了新途径。