Suppr超能文献

从人类大脑皮层电图信号中解码指尖轨迹

Decoding fingertip trajectory from electrocorticographic signals in humans.

作者信息

Nakanishi Yasuhiko, Yanagisawa Takufumi, Shin Duk, Chen Chao, Kambara Hiroyuki, Yoshimura Natsue, Fukuma Ryohei, Kishima Haruhiko, Hirata Masayuki, Koike Yasuharu

机构信息

Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama 226-8503, Japan.

Department of Neurosurgery, Osaka University Medical School, Osaka 565-0871, Japan; ATR Computational Neuroscience Laboratories, Japan; Division of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Japan.

出版信息

Neurosci Res. 2014 Aug;85:20-7. doi: 10.1016/j.neures.2014.05.005. Epub 2014 May 29.

Abstract

Seeking to apply brain-machine interface technology in neuroprosthetics, a number of methods for predicting trajectory of the elbow and wrist have been proposed and have shown remarkable results. Recently, the prediction of hand trajectory and classification of hand gestures or grasping types have attracted considerable attention. However, trajectory prediction for precise finger motion has remained a challenge. We proposed a method for the prediction of fingertip motions from electrocorticographic signals in human cortex. A patient performed extension/flexion tasks with three fingers. Average Pearson's correlation coefficients and normalized root-mean-square errors between decoded and actual trajectories were 0.83-0.90 and 0.24-0.48, respectively. To confirm generalizability to other users, we applied our method to the BCI Competition IV open data sets. Our method showed that the prediction accuracy of fingertip trajectory could be equivalent to that of other results in the competition.

摘要

为了将脑机接口技术应用于神经假体,人们提出了多种预测肘部和腕部轨迹的方法,并取得了显著成果。最近,手部轨迹预测以及手部姿势或抓握类型的分类受到了广泛关注。然而,精确手指运动的轨迹预测仍然是一个挑战。我们提出了一种从人类大脑皮层的脑电信号预测指尖运动的方法。一名患者用三根手指进行伸展/弯曲任务。解码轨迹与实际轨迹之间的平均皮尔逊相关系数和归一化均方根误差分别为0.83 - 0.90和0.24 - 0.48。为了确认该方法对其他用户的通用性,我们将我们的方法应用于BCI竞赛IV公开数据集。我们的方法表明,指尖轨迹的预测精度可以与竞赛中的其他结果相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验