Suppr超能文献

威胁诱发焦虑和目标分心期间杏仁核-前额叶皮层的功能连接

Amygdala-prefrontal cortex functional connectivity during threat-induced anxiety and goal distraction.

作者信息

Gold Andrea L, Morey Rajendra A, McCarthy Gregory

机构信息

Department of Psychology (ALG, GM), Yale University, New Haven, Connecticut.

Mental Illness Research Education and Clinical Center for Post Deployment Mental Health (RAM, GM), Durham Veterans Affairs Medical Center, Duke University, Durham, North Carolina; Duke-University of North Carolina Brain Imaging and Analysis Center (RAM), Duke University, Durham, North Carolina; Department of Psychiatry and Behavioral Sciences (RAM), Duke University, Durham, North Carolina.

出版信息

Biol Psychiatry. 2015 Feb 15;77(4):394-403. doi: 10.1016/j.biopsych.2014.03.030. Epub 2014 Apr 19.

Abstract

BACKGROUND

Anxiety produced by environmental threats can impair goal-directed processing and is associated with a range of psychiatric disorders, particularly when aversive events occur unpredictably. The prefrontal cortex (PFC) is thought to implement controls that minimize performance disruptions from threat-induced anxiety and goal distraction by modulating activity in regions involved in threat detection, such as the amygdala. The inferior frontal gyrus (IFG), orbitofrontal cortex (OFC), and ventromedial PFC (vmPFC) have been linked to the regulation of anxiety during threat exposure. We developed a paradigm to determine if threat-induced anxiety would enhance functional connectivity between the amygdala and IFG, OFC, and vmPFC.

METHODS

Healthy adults performed a computer-gaming style task involving capturing prey and evading predators to optimize monetary rewards while exposed to the threat of unpredictable shock. Psychophysiological recording (n = 26) and functional magnetic resonance imaging scanning (n = 17) were collected during the task in separate cohorts. Task-specific changes in functional connectivity with the amygdala were examined using psychophysiological interaction analysis.

RESULTS

Threat exposure resulted in greater arousal measured by increased skin conductance but did not influence performance (i.e., monetary losses or rewards). Greater functional connectivity between the right amygdala and bilateral IFG, OFC, vmPFC, anterior cingulate cortex, and frontopolar cortex was associated with threat exposure.

CONCLUSIONS

Exposure to unpredictable threat modulates amygdala-PFC functional connectivity that may help maintain performance when experiencing anxiety induced by threat. Our paradigm is well-suited to explore the neural underpinnings of the anxiety response to unpredictable threat in patients with various anxiety disorders.

摘要

背景

环境威胁所产生的焦虑会损害目标导向性加工,并且与一系列精神疾病相关,尤其是当厌恶事件不可预测地发生时。前额叶皮层(PFC)被认为通过调节参与威胁检测的区域(如杏仁核)的活动来实施控制,从而将威胁诱发的焦虑和目标干扰对表现的破坏降至最低。额下回(IFG)、眶额皮层(OFC)和腹内侧前额叶皮层(vmPFC)已被证实与威胁暴露期间的焦虑调节有关。我们设计了一种范式,以确定威胁诱发的焦虑是否会增强杏仁核与IFG、OFC和vmPFC之间的功能连接。

方法

健康成年人执行一项电脑游戏风格的任务,即在面临不可预测的电击威胁时捕捉猎物并躲避捕食者,以优化金钱奖励。在任务过程中,分别对不同队列的受试者进行心理生理记录(n = 26)和功能磁共振成像扫描(n = 17)。使用心理生理交互分析来检查与杏仁核功能连接的任务特异性变化。

结果

威胁暴露导致通过皮肤电导率增加测量的更高觉醒水平,但不影响表现(即金钱损失或奖励)。右侧杏仁核与双侧IFG、OFC、vmPFC、前扣带回皮层和额极皮层之间更强的功能连接与威胁暴露相关。

结论

暴露于不可预测的威胁会调节杏仁核 - PFC功能连接,这可能有助于在经历威胁诱发的焦虑时维持表现。我们的范式非常适合探索各种焦虑症患者对不可预测威胁的焦虑反应的神经基础。

相似文献

1
Amygdala-prefrontal cortex functional connectivity during threat-induced anxiety and goal distraction.
Biol Psychiatry. 2015 Feb 15;77(4):394-403. doi: 10.1016/j.biopsych.2014.03.030. Epub 2014 Apr 19.
4
Amygdala-Cortical Connectivity: Associations with Anxiety, Development, and Threat.
Depress Anxiety. 2016 Oct;33(10):917-926. doi: 10.1002/da.22470.
6
Effective amygdala-prefrontal connectivity predicts individual differences in successful emotion regulation.
Soc Cogn Affect Neurosci. 2017 Apr 1;12(4):569-585. doi: 10.1093/scan/nsw169.
8
fMRI neurofeedback of amygdala response to aversive stimuli enhances prefrontal-limbic brain connectivity.
Neuroimage. 2016 Jan 15;125:182-188. doi: 10.1016/j.neuroimage.2015.10.027. Epub 2015 Oct 16.
9
Threat-related learning relies on distinct dorsal prefrontal cortex network connectivity.
Neuroimage. 2014 Nov 15;102 Pt 2(0 2):904-12. doi: 10.1016/j.neuroimage.2014.08.005. Epub 2014 Aug 8.
10
Linked networks for learning and expressing location-specific threat.
Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):E1032-E1040. doi: 10.1073/pnas.1714691115. Epub 2018 Jan 11.

引用本文的文献

1
An intracranial dissection of human escape circuits.
Nat Commun. 2025 Jul 1;16(1):5520. doi: 10.1038/s41467-025-60666-9.
2
The longitudinal impact of screen media activities on brain function, architecture and mental health in early adolescence.
Int J Clin Health Psychol. 2025 Jul-Sep;25(3):100589. doi: 10.1016/j.ijchp.2025.100589. Epub 2025 Jun 14.
3
Emotional stress during the COVID-19 lockdown: how negative X/Twitter posts correlated with changes in the brain's fear network.
Front Nucl Med. 2025 Jun 10;5:1575026. doi: 10.3389/fnume.2025.1575026. eCollection 2025.
4
6
The interaction of ADHD traits and trait anxiety on inhibitory control.
Psychophysiology. 2025 Feb;62(2):e14734. doi: 10.1111/psyp.14734. Epub 2024 Dec 3.
7
Amygdala activity after subchronic escitalopram administration in healthy volunteers: A pharmaco-functional magnetic resonance imaging study.
J Psychopharmacol. 2024 Dec;38(12):1071-1082. doi: 10.1177/02698811241286773. Epub 2024 Oct 4.
8
Advancing the treatment of anxiety disorders in transition-age youth: a review of the therapeutic effects of unconscious exposure.
J Child Psychol Psychiatry. 2025 Jan;66(1):98-121. doi: 10.1111/jcpp.14037. Epub 2024 Aug 11.
10

本文引用的文献

1
Response to learned threat: An FMRI study in adolescent and adult anxiety.
Am J Psychiatry. 2013 Oct;170(10):1195-204. doi: 10.1176/appi.ajp.2013.12050651.
3
Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies.
Cereb Cortex. 2014 Nov;24(11):2981-90. doi: 10.1093/cercor/bht154. Epub 2013 Jun 13.
4
The consequences of adolescent chronic unpredictable stress exposure on brain and behavior.
Neuroscience. 2013 Sep 26;249:232-41. doi: 10.1016/j.neuroscience.2012.09.018. Epub 2012 Sep 20.
5
Neurobiology of chronic mild stress: parallels to major depression.
Neurosci Biobehav Rev. 2012 Oct;36(9):2085-117. doi: 10.1016/j.neubiorev.2012.07.001. Epub 2012 Jul 7.
6
Quantitative meta-analysis of neural activity in posttraumatic stress disorder.
Biol Mood Anxiety Disord. 2012 May 18;2:9. doi: 10.1186/2045-5380-2-9.
7
Tools of the trade: psychophysiological interactions and functional connectivity.
Soc Cogn Affect Neurosci. 2012 Jun;7(5):604-9. doi: 10.1093/scan/nss055. Epub 2012 May 7.
8
Brain activity during sympathetic response in anticipation and experience of pain.
Hum Brain Mapp. 2013 Aug;34(8):1768-82. doi: 10.1002/hbm.22035. Epub 2012 Mar 22.
9
Childhood maltreatment predicts unfavorable course of illness and treatment outcome in depression: a meta-analysis.
Am J Psychiatry. 2012 Feb;169(2):141-51. doi: 10.1176/appi.ajp.2011.11020335.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验