Whittaker Tiffany A, Beretvas S Natasha, Falbo Toni
The University of Texas at Austin.
Struct Equ Modeling. 2014 Jan 1;21(2):303-317. doi: 10.1080/10705511.2014.882695.
The analysis of longitudinal data collected from non-exchangeable dyads presents a challenge for applied researchers for various reasons. This paper introduces the Dyadic Curve-of-Factors Model (D-COFM) which extends the Curve-of-Factors Model (COFM) proposed by McArdle (1988) for use with non-exchangeable dyadic data. The D-COFM overcomes problems with modeling composite scores across time and instead permits examination of the growth in latent constructs over time. The D-COFM also appropriately models the interdependency among non-exchangeable dyads. Different parameterizations of the D-COFM are illustrated and discussed using a real dataset to aid applied researchers when analyzing dyadic longitudinal data.
出于各种原因,对从不可交换二元组收集的纵向数据进行分析,给应用研究人员带来了挑战。本文介绍了二元因子曲线模型(D-COFM),它扩展了麦卡德尔(1988)提出的因子曲线模型(COFM),用于不可交换二元数据。D-COFM克服了跨时间对综合得分进行建模的问题,而是允许检验潜在结构随时间的增长。D-COFM还对不可交换二元组之间的相互依赖性进行了适当建模。使用一个真实数据集对D-COFM的不同参数化进行了说明和讨论,以帮助应用研究人员分析二元纵向数据。