Suppr超能文献

使用复发率检测脑电图中的爆发抑制模式。

Detection of burst suppression patterns in EEG using recurrence rate.

作者信息

Liang Zhenhu, Wang Yinghua, Ren Yongshao, Li Duan, Voss Logan, Sleigh Jamie, Li Xiaoli

机构信息

Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China.

State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China ; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China.

出版信息

ScientificWorldJournal. 2014;2014:295070. doi: 10.1155/2014/295070. Epub 2014 Apr 17.

Abstract

Burst suppression is a unique electroencephalogram (EEG) pattern commonly seen in cases of severely reduced brain activity such as overdose of general anesthesia. It is important to detect burst suppression reliably during the administration of anesthetic or sedative agents, especially for cerebral-protective treatments in various neurosurgical diseases. This study investigates recurrent plot (RP) analysis for the detection of the burst suppression pattern (BSP) in EEG. The RP analysis is applied to EEG data containing BSPs collected from 14 patients. Firstly we obtain the best selection of parameters for RP analysis. Then, the recurrence rate (RR), determinism (DET), and entropy (ENTR) are calculated. Then RR was selected as the best BSP index one-way analysis of variance (ANOVA) and multiple comparison tests. Finally, the performance of RR analysis is compared with spectral analysis, bispectral analysis, approximate entropy, and the nonlinear energy operator (NLEO). ANOVA and multiple comparison tests showed that the RR could detect BSP and that it was superior to other measures with the highest sensitivity of suppression detection (96.49%, P = 0.03). Tracking BSP patterns is essential for clinical monitoring in critically ill and anesthetized patients. The purposed RR may provide an effective burst suppression detector for developing new patient monitoring systems.

摘要

爆发抑制是一种独特的脑电图(EEG)模式,常见于大脑活动严重降低的情况,如全身麻醉过量。在给予麻醉剂或镇静剂期间可靠地检测爆发抑制非常重要,特别是对于各种神经外科疾病的脑保护治疗。本研究调查了用于检测脑电图中爆发抑制模式(BSP)的递归图(RP)分析。RP分析应用于从14名患者收集的包含BSP的脑电图数据。首先,我们获得了RP分析的最佳参数选择。然后,计算复发率(RR)、确定性(DET)和熵(ENTR)。然后,通过单因素方差分析(ANOVA)和多重比较检验,选择RR作为最佳的BSP指标。最后,将RR分析的性能与频谱分析、双谱分析、近似熵和非线性能量算子(NLEO)进行比较。ANOVA和多重比较检验表明,RR可以检测BSP,并且在抑制检测灵敏度最高(96.49%,P = 0.03)方面优于其他测量方法。跟踪BSP模式对于重症和麻醉患者的临床监测至关重要。所提出的RR可能为开发新的患者监测系统提供一种有效的爆发抑制检测器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa6a/4030476/10f5cb63d38c/TSWJ2014-295070.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验