Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic.
J Biol Chem. 2013 Mar 29;288(13):9491-507. doi: 10.1074/jbc.M112.443952. Epub 2013 Feb 13.
Plant ALDH10 family members are aminoaldehyde dehydrogenases (AMADHs), which oxidize ω-aminoaldehydes to the corresponding acids. They have been linked to polyamine catabolism, osmoprotection, secondary metabolism (fragrance), and carnitine biosynthesis. Plants commonly contain two AMADH isoenzymes. We previously studied the substrate specificity of two AMADH isoforms from peas (PsAMADHs). Here, two isoenzymes from tomato (Solanum lycopersicum), SlAMADHs, and three AMADHs from maize (Zea mays), ZmAMADHs, were kinetically investigated to obtain further clues to the catalytic mechanism and the substrate specificity. We also solved the high resolution crystal structures of SlAMADH1 and ZmAMADH1a because these enzymes stand out from the others regarding their activity. From the structural and kinetic analysis, we can state that five residues at positions 163, 288, 289, 444, and 454 (PsAMADHs numbering) can, directly or not, significantly modulate AMADH substrate specificity. In the SlAMADH1 structure, a PEG aldehyde derived from the precipitant forms a thiohemiacetal intermediate, never observed so far. Its absence in the SlAMADH1-E260A structure suggests that Glu-260 can activate the catalytic cysteine as a nucleophile. We show that the five AMADHs studied here are capable of oxidizing 3-dimethylsulfoniopropionaldehyde to the cryo- and osmoprotectant 3-dimethylsulfoniopropionate. For the first time, we also show that 3-acetamidopropionaldehyde, the third aminoaldehyde besides 3-aminopropionaldehyde and 4-aminobutyraldehyde, is generally oxidized by AMADHs, meaning that these enzymes are unique in metabolizing and detoxifying aldehyde products of polyamine degradation to nontoxic amino acids. Finally, gene expression profiles in maize indicate that AMADHs might be important for controlling ω-aminoaldehyde levels during early stages of the seed development.
植物 ALDH10 家族成员是氨基酸醛脱氢酶 (AMADHs),可将 ω-氨基酸醛氧化为相应的酸。它们与多胺分解代谢、渗透保护、次生代谢(香气)和肉碱生物合成有关。植物通常含有两种 AMADH 同工酶。我们之前研究了豌豆 (PsAMADHs) 两种 AMADH 同工酶的底物特异性。在这里,我们研究了番茄 (Solanum lycopersicum) 的两种同工酶 SlAMADH 和玉米 (Zea mays) 的三种 AMADH ZmAMADH,以获得进一步的线索,了解催化机制和底物特异性。我们还解决了 SlAMADH1 和 ZmAMADH1a 的高分辨率晶体结构,因为这些酶在活性方面与其他酶明显不同。从结构和动力学分析中,我们可以指出,位置 163、288、289、444 和 454(PsAMADHs 编号)的五个残基可以直接或间接地显著调节 AMADH 底物特异性。在 SlAMADH1 结构中,来自沉淀剂的 PEG 醛形成硫代半缩醛中间体,这是迄今为止从未观察到的。在 SlAMADH1-E260A 结构中不存在该中间体表明 Glu-260 可以作为亲核试剂激活催化半胱氨酸。我们表明,这里研究的五种 AMADH 能够将 3-二甲基亚砜丙醛氧化为 cryo- 和渗透保护剂 3-二甲基亚砜丙酸盐。我们首次表明,除 3-氨基丙醛和 4-氨基丁酸醛之外的第三种氨基酸醛 3-乙酰胺丙醛通常也被 AMADH 氧化,这意味着这些酶在将多胺降解的醛产物代谢和解毒为无毒氨基酸方面是独特的。最后,玉米的基因表达谱表明,AMADHs 可能在种子发育早期控制 ω-氨基酸醛水平方面发挥重要作用。