Suppr超能文献

鉴定具有影响甲型H1N1和H3N2亚型流感病毒宿主适应性潜力的组合宿主特异性特征。

Identification of combinatorial host-specific signatures with a potential to affect host adaptation in influenza A H1N1 and H3N2 subtypes.

作者信息

Khaliq Zeeshan, Leijon Mikael, Belák Sándor, Komorowski Jan

机构信息

Department of Cell and Molecular Biology, Computational Biology and Bioinformatics, Science for Life Laboratory, Uppsala University, SE-751 24, Uppsala, Sweden.

Department of Virology, Parasitology and Immunobiology (VIP), National Veterinary Institute (SVA), Uppsala, Sweden.

出版信息

BMC Genomics. 2016 Jul 29;17:529. doi: 10.1186/s12864-016-2919-4.

Abstract

BACKGROUND

The underlying strategies used by influenza A viruses (IAVs) to adapt to new hosts while crossing the species barrier are complex and yet to be understood completely. Several studies have been published identifying singular genomic signatures that indicate such a host switch. The complexity of the problem suggested that in addition to the singular signatures, there might be a combinatorial use of such genomic features, in nature, defining adaptation to hosts.

RESULTS

We used computational rule-based modeling to identify combinatorial sets of interacting amino acid (aa) residues in 12 proteins of IAVs of H1N1 and H3N2 subtypes. We built highly accurate rule-based models for each protein that could differentiate between viral aa sequences coming from avian and human hosts. We found 68 host-specific combinations of aa residues, potentially associated to host adaptation on HA, M1, M2, NP, NS1, NEP, PA, PA-X, PB1 and PB2 proteins of the H1N1 subtype and 24 on M1, M2, NEP, PB1 and PB2 proteins of the H3N2 subtypes. In addition to these combinations, we found 132 novel singular aa signatures distributed among all proteins, including the newly discovered PA-X protein, of both subtypes. We showed that HA, NA, NP, NS1, NEP, PA-X and PA proteins of the H1N1 subtype carry H1N1-specific and HA, NA, PA-X, PA, PB1-F2 and PB1 of the H3N2 subtype carry H3N2-specific signatures. M1, M2, PB1-F2, PB1 and PB2 of H1N1 subtype, in addition to H1N1 signatures, also carry H3N2 signatures. Similarly M1, M2, NP, NS1, NEP and PB2 of H3N2 subtype were shown to carry both H3N2 and H1N1 host-specific signatures (HSSs).

CONCLUSIONS

To sum it up, we computationally constructed simple IF-THEN rule-based models that could distinguish between aa sequences of avian and human IAVs. From the rules we identified HSSs having a potential to affect the adaptation to specific hosts. The identification of combinatorial HSSs suggests that the process of adaptation of IAVs to a new host is more complex than previously suggested. The present study provides a basis for further detailed studies with the aim to elucidate the molecular mechanisms providing the foundation for the adaptation process.

摘要

背景

甲型流感病毒(IAV)在跨越物种屏障适应新宿主时所采用的潜在策略十分复杂,尚未完全明晰。已有多项研究发表,确定了表明此类宿主转换的单一基因组特征。问题的复杂性表明,除了单一特征外,这些基因组特征在自然界中可能存在组合使用的情况,从而决定对宿主的适应性。

结果

我们使用基于规则的计算建模方法,确定了H1N1和H3N2亚型IAV的12种蛋白质中相互作用氨基酸(aa)残基的组合集。我们为每种蛋白质构建了高度准确的基于规则的模型,该模型可以区分来自禽类和人类宿主的病毒aa序列。我们在H1N1亚型的血凝素(HA)、基质蛋白1(M1)、基质蛋白2(M2)、核蛋白(NP)、非结构蛋白1(NS1)、核输出蛋白(NEP)、聚合酶酸性蛋白(PA)、PA-X、聚合酶碱性蛋白1(PB1)和聚合酶碱性蛋白2(PB2)等蛋白上发现了68种宿主特异性氨基酸残基组合,可能与宿主适应性相关;在H3N2亚型的M1、M2、NEP、PB1和PB2蛋白上发现了24种。除了这些组合外,我们还在两种亚型的所有蛋白质(包括新发现的PA-X蛋白)中发现了132个新的单一氨基酸特征。我们发现H1N1亚型的HA、神经氨酸酶(NA)、NP、NS1、NEP、PA-X和PA蛋白带有H1N1特异性特征,H3N2亚型的HA、NA、PA-X、PA、PB1-F2和PB1带有H3N2特异性特征。H1N1亚型的M1、M2、PB1-F2、PB1和PB2除了带有H1N1特征外,还带有H3N2特征。同样,H3N2亚型的M1、M2、NP、NS1、NEP和PB2被证明同时带有H3N2和H1N1宿主特异性特征(HSSs)。

结论

综上所述,我们通过计算构建了简单的基于“如果-那么”规则的模型,该模型可以区分禽类和人类IAV的aa序列。从这些规则中,我们确定了可能影响对特定宿主适应性的HSSs。组合HSSs的识别表明IAV适应新宿主的过程比之前认为的更为复杂。本研究为进一步详细研究提供了基础,旨在阐明为适应过程提供基础的分子机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf81/4966792/38058ec25798/12864_2016_2919_Fig1_HTML.jpg

相似文献

3
Zoonotic Risk, Pathogenesis, and Transmission of Avian-Origin H3N2 Canine Influenza Virus.
J Virol. 2017 Oct 13;91(21). doi: 10.1128/JVI.00637-17. Print 2017 Nov 1.
4
Seasonal H3N2 and 2009 Pandemic H1N1 Influenza A Viruses Reassort Efficiently but Produce Attenuated Progeny.
J Virol. 2017 Aug 10;91(17). doi: 10.1128/JVI.00830-17. Print 2017 Sep 1.
5
7
9
Influenza A virus plasticity-A temporal analysis of species-associated genomic signatures.
J Formos Med Assoc. 2015 May;114(5):456-63. doi: 10.1016/j.jfma.2015.01.015. Epub 2015 Mar 6.
10

引用本文的文献

1
Advantages of Broad-Spectrum Influenza mRNA Vaccines and Their Impact on Pulmonary Influenza.
Vaccines (Basel). 2024 Dec 7;12(12):1382. doi: 10.3390/vaccines12121382.
3
Infection and tissue distribution of highly pathogenic avian influenza A type H5N1 (clade 2.3.4.4b) in red fox kits ().
Emerg Microbes Infect. 2023 Dec;12(2):2249554. doi: 10.1080/22221751.2023.2249554. Epub 2023 Aug 17.
4
Misclassified: identification of zoonotic transition biomarker candidates for influenza A viruses using deep neural network.
Front Genet. 2023 Jul 27;14:1145166. doi: 10.3389/fgene.2023.1145166. eCollection 2023.
5
Identifying host-specific amino acid signatures for influenza A viruses using an adjusted entropy measure.
BMC Bioinformatics. 2022 Aug 12;23(1):333. doi: 10.1186/s12859-022-04885-7.
6
Host-Adaptive Signatures of H3N2 Influenza Virus in Canine.
Front Vet Sci. 2021 Oct 20;8:740472. doi: 10.3389/fvets.2021.740472. eCollection 2021.

本文引用的文献

2
Predicting host tropism of influenza A virus proteins using random forest.
BMC Med Genomics. 2014;7 Suppl 3(Suppl 3):S1. doi: 10.1186/1755-8794-7-S3-S1. Epub 2014 Dec 8.
3
A recommended numbering scheme for influenza A HA subtypes.
PLoS One. 2014 Nov 12;9(11):e112302. doi: 10.1371/journal.pone.0112302. eCollection 2014.
4
Enabling the 'host jump': structural determinants of receptor-binding specificity in influenza A viruses.
Nat Rev Microbiol. 2014 Dec;12(12):822-31. doi: 10.1038/nrmicro3362. Epub 2014 Nov 10.
5
Influenza A virus reassortment.
Curr Top Microbiol Immunol. 2014;385:377-401. doi: 10.1007/82_2014_395.
6
Ciruvis: a web-based tool for rule networks and interaction detection using rule-based classifiers.
BMC Bioinformatics. 2014 May 12;15:139. doi: 10.1186/1471-2105-15-139.
7
Identification and chronological analysis of genomic signatures in influenza A viruses.
PLoS One. 2014 Jan 8;9(1):e84638. doi: 10.1371/journal.pone.0084638. eCollection 2014.
8
Rule-based models of the interplay between genetic and environmental factors in childhood allergy.
PLoS One. 2013 Nov 19;8(11):e80080. doi: 10.1371/journal.pone.0080080. eCollection 2013.
9
New world bats harbor diverse influenza A viruses.
PLoS Pathog. 2013;9(10):e1003657. doi: 10.1371/journal.ppat.1003657. Epub 2013 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验