Suppr超能文献

一种结合季节性自回归积分滑动平均模型(ARIMA)和非线性自回归神经网络(NARNN)的新型混合模型在中国深圳手足口病发病病例预测中的应用。

Application of a new hybrid model with seasonal auto-regressive integrated moving average (ARIMA) and nonlinear auto-regressive neural network (NARNN) in forecasting incidence cases of HFMD in Shenzhen, China.

作者信息

Yu Lijing, Zhou Lingling, Tan Li, Jiang Hongbo, Wang Ying, Wei Sheng, Nie Shaofa

机构信息

School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

出版信息

PLoS One. 2014 Jun 3;9(6):e98241. doi: 10.1371/journal.pone.0098241. eCollection 2014.

Abstract

BACKGROUND

Outbreaks of hand-foot-mouth disease (HFMD) have been reported for many times in Asia during the last decades. This emerging disease has drawn worldwide attention and vigilance. Nowadays, the prevention and control of HFMD has become an imperative issue in China. Early detection and response will be helpful before it happening, using modern information technology during the epidemic.

METHOD

In this paper, a hybrid model combining seasonal auto-regressive integrated moving average (ARIMA) model and nonlinear auto-regressive neural network (NARNN) is proposed to predict the expected incidence cases from December 2012 to May 2013, using the retrospective observations obtained from China Information System for Disease Control and Prevention from January 2008 to November 2012.

RESULTS

The best-fitted hybrid model was combined with seasonal ARIMA [Formula: see text] and NARNN with 15 hidden units and 5 delays. The hybrid model makes the good forecasting performance and estimates the expected incidence cases from December 2012 to May 2013, which are respectively -965.03, -1879.58, 4138.26, 1858.17, 4061.86 and 6163.16 with an obviously increasing trend.

CONCLUSION

The model proposed in this paper can predict the incidence trend of HFMD effectively, which could be helpful to policy makers. The usefulness of expected cases of HFMD perform not only in detecting outbreaks or providing probability statements, but also in providing decision makers with a probable trend of the variability of future observations that contains both historical and recent information.

摘要

背景

在过去几十年中,亚洲多次报告手足口病(HFMD)疫情。这种新出现的疾病已引起全球关注和警惕。如今,手足口病的预防和控制已成为中国的当务之急。在疫情期间利用现代信息技术进行早期发现和应对,将有助于在其发生之前做好准备。

方法

本文提出了一种将季节性自回归积分移动平均(ARIMA)模型与非线性自回归神经网络(NARNN)相结合的混合模型,用于预测2012年12月至2013年5月的预期发病病例,使用了从2008年1月至2012年11月中国疾病预防控制信息系统获得的回顾性观察数据。

结果

最佳拟合混合模型由季节性ARIMA [公式:见正文]和具有15个隐藏单元和5个延迟的NARNN组成。该混合模型具有良好的预测性能,并估计了2012年12月至2013年5月的预期发病病例,分别为-965.03、-1879.58、4138.26、1858.17、4061.86和6163.16,呈明显上升趋势。

结论

本文提出的模型能够有效预测手足口病的发病趋势,这对政策制定者可能会有所帮助。手足口病预期病例的作用不仅在于检测疫情或提供概率陈述,还在于为决策者提供未来观察值变化的可能趋势,其中包含历史和近期信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验