Suppr超能文献

运动调节导致远端力使部分解体的衣滴虫轴丝弯曲成圆弧。

Motor regulation results in distal forces that bend partially disintegrated Chlamydomonas axonemes into circular arcs.

机构信息

Max Planck Institute of Cell Biology and Genetics, Dresden, Germany.

Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.

出版信息

Biophys J. 2014 Jun 3;106(11):2434-42. doi: 10.1016/j.bpj.2014.03.046.

Abstract

The bending of cilia and flagella is driven by forces generated by dynein motor proteins. These forces slide adjacent microtubule doublets within the axoneme, the motile cytoskeletal structure. To create regular, oscillatory beating patterns, the activities of the axonemal dyneins must be coordinated both spatially and temporally. It is thought that coordination is mediated by stresses or strains, which build up within the moving axoneme, and somehow regulate dynein activity. During experimentation with axonemes subjected to mild proteolysis, we observed pairs of doublets associating with each other and forming bends with almost constant curvature. By modeling the statics of a pair of filaments, we show that the activity of the motors concentrates at the distal tips of the doublets. Furthermore, we show that this distribution of motor activity accords with models in which curvature, or curvature-induced normal forces, regulates the activity of the motors. These observations, together with our theoretical analysis, provide evidence that dynein activity can be regulated by curvature or normal forces, which may, therefore, play a role in coordinating the beating of cilia and flagella.

摘要

纤毛和鞭毛的弯曲是由动力蛋白马达蛋白产生的力驱动的。这些力在轴丝内的相邻微管二联体上滑动,轴丝是运动的细胞骨架结构。为了产生规则的、振荡的拍打模式,轴丝动力蛋白的活性必须在空间和时间上协调。人们认为,协调是通过在运动轴丝内积聚的应力或应变来介导的,并且以某种方式调节动力蛋白的活性。在对轻微蛋白水解的轴丝进行实验时,我们观察到双联体彼此结合并形成几乎恒定曲率的弯曲。通过对一对纤维的静态建模,我们表明马达的活性集中在双联体的远端尖端。此外,我们表明,这种马达活性的分布与曲率或曲率诱导的法向力调节马达活性的模型一致。这些观察结果以及我们的理论分析提供了证据,表明动力蛋白的活性可以通过曲率或法向力来调节,因此,曲率或法向力可能在协调纤毛和鞭毛的拍打中发挥作用。

相似文献

2
Curvature regulation of the ciliary beat through axonemal twist.
Phys Rev E. 2016 Oct;94(4-1):042426. doi: 10.1103/PhysRevE.94.042426. Epub 2016 Oct 28.
3
Force-Generating Mechanism of Axonemal Dynein in Solo and Ensemble.
Int J Mol Sci. 2020 Apr 18;21(8):2843. doi: 10.3390/ijms21082843.
4
Reconstitution of flagellar sliding.
Methods Enzymol. 2013;524:343-69. doi: 10.1016/B978-0-12-397945-2.00019-6.
6
The Kinetics of Nucleotide Binding to Isolated Chlamydomonas Axonemes Using UV-TIRF Microscopy.
Biophys J. 2019 Aug 20;117(4):679-687. doi: 10.1016/j.bpj.2019.07.004. Epub 2019 Jul 9.
7
Oscillatory movement of a dynein-microtubule complex crosslinked with DNA origami.
Elife. 2022 Jun 24;11:e76357. doi: 10.7554/eLife.76357.
8
Central pair apparatus enhances outer-arm dynein activities through regulation of inner-arm dyneins.
Cell Motil Cytoskeleton. 2009 May;66(5):272-80. doi: 10.1002/cm.20355.
9
Inner lumen proteins stabilize doublet microtubules in cilia and flagella.
Nat Commun. 2019 Mar 8;10(1):1143. doi: 10.1038/s41467-019-09051-x.
10
Detailed structural and biochemical characterization of the nexin-dynein regulatory complex.
Mol Biol Cell. 2015 Jan 15;26(2):294-304. doi: 10.1091/mbc.E14-09-1367. Epub 2014 Nov 19.

引用本文的文献

1
Structural determination and modeling of ciliary microtubules.
Acta Crystallogr D Struct Biol. 2024 Apr 1;80(Pt 4):220-231. doi: 10.1107/S2059798324001815. Epub 2024 Mar 7.
2
Structure and Mechanics of Dynein Motors.
Annu Rev Biophys. 2021 May 6;50:549-574. doi: 10.1146/annurev-biophys-111020-101511.
3
Structure of a microtubule-bound axonemal dynein.
Nat Commun. 2021 Jan 20;12(1):477. doi: 10.1038/s41467-020-20735-7.
4
Intracellular coupling modulates biflagellar synchrony.
J R Soc Interface. 2021 Jan;18(174):20200660. doi: 10.1098/rsif.2020.0660. Epub 2021 Jan 13.
5
Human sperm uses asymmetric and anisotropic flagellar controls to regulate swimming symmetry and cell steering.
Sci Adv. 2020 Jul 31;6(31):eaba5168. doi: 10.1126/sciadv.aba5168. eCollection 2020 Jul.
6
Cilia oscillations.
Philos Trans R Soc Lond B Biol Sci. 2020 Feb 17;375(1792):20190157. doi: 10.1098/rstb.2019.0157. Epub 2019 Dec 30.
7
Automated identification of flagella from videomicroscopy via the medial axis transform.
Sci Rep. 2019 Mar 21;9(1):5015. doi: 10.1038/s41598-019-41459-9.
9
Coordinated beating of algal flagella is mediated by basal coupling.
Proc Natl Acad Sci U S A. 2016 May 17;113(20):E2784-93. doi: 10.1073/pnas.1518527113. Epub 2016 May 2.
10
Automatic optimal filament segmentation with sub-pixel accuracy using generalized linear models and B-spline level-sets.
Med Image Anal. 2016 Aug;32:157-72. doi: 10.1016/j.media.2016.03.007. Epub 2016 Apr 4.

本文引用的文献

1
Reconstitution of flagellar sliding.
Methods Enzymol. 2013;524:343-69. doi: 10.1016/B978-0-12-397945-2.00019-6.
2
How molecular motors shape the flagellar beat.
HFSP J. 2007 Sep;1(3):192-208. doi: 10.2976/1.2773861.
3
Thinking about flagellar oscillation.
Cell Motil Cytoskeleton. 2009 Aug;66(8):425-36. doi: 10.1002/cm.20313.
4
Force-induced bidirectional stepping of cytoplasmic dynein.
Cell. 2007 Nov 30;131(5):952-65. doi: 10.1016/j.cell.2007.10.016.
5
Chlamydomonas reinhardtii hydin is a central pair protein required for flagellar motility.
J Cell Biol. 2007 Feb 12;176(4):473-82. doi: 10.1083/jcb.200611115.
6
The molecular architecture of axonemes revealed by cryoelectron tomography.
Science. 2006 Aug 18;313(5789):944-8. doi: 10.1126/science.1128618.
7
Cyclical interactions between two outer doublet microtubules in split flagellar axonemes.
Biophys J. 2005 Nov;89(5):3261-8. doi: 10.1529/biophysj.105.067876. Epub 2005 Aug 19.
8
Proteomic analysis of a eukaryotic cilium.
J Cell Biol. 2005 Jul 4;170(1):103-13. doi: 10.1083/jcb.200504008.
9
Mechanics of the kinesin step.
Nature. 2005 May 19;435(7040):308-12. doi: 10.1038/nature03528.
10
Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain.
Nature. 2004 Mar 11;428(6979):198-202. doi: 10.1038/nature02393.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验