Suppr超能文献

脑活动的累积源成像,同时记录低频和高频神经磁信号。

Accumulated source imaging of brain activity with both low and high-frequency neuromagnetic signals.

机构信息

Division of Neurology, MEG Center, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA.

Department of Neurosurgery, Saint Louis University St. Louis, MO, USA.

出版信息

Front Neuroinform. 2014 May 21;8:57. doi: 10.3389/fninf.2014.00057. eCollection 2014.

Abstract

Recent studies have revealed the importance of high-frequency brain signals (>70 Hz). One challenge of high-frequency signal analysis is that the size of time-frequency representation of high-frequency brain signals could be larger than 1 terabytes (TB), which is beyond the upper limits of a typical computer workstation's memory (<196 GB). The aim of the present study is to develop a new method to provide greater sensitivity in detecting high-frequency magnetoencephalography (MEG) signals in a single automated and versatile interface, rather than the more traditional, time-intensive visual inspection methods, which may take up to several days. To address the aim, we developed a new method, accumulated source imaging, defined as the volumetric summation of source activity over a period of time. This method analyzes signals in both low- (170 Hz) and high-frequency (70200 Hz) ranges at source levels. To extract meaningful information from MEG signals at sensor space, the signals were decomposed to channel-cross-channel matrix (CxC) representing the spatiotemporal patterns of every possible sensor-pair. A new algorithm was developed and tested by calculating the optimal CxC and source location-orientation weights for volumetric source imaging, thereby minimizing multi-source interference and reducing computational cost. The new method was implemented in C/C++ and tested with MEG data recorded from clinical epilepsy patients. The results of experimental data demonstrated that accumulated source imaging could effectively summarize and visualize MEG recordings within 12.7 h by using approximately 10 GB of computer memory. In contrast to the conventional method of visually identifying multi-frequency epileptic activities that traditionally took 2-3 days and used 1-2 TB storage, the new approach can quantify epileptic abnormalities in both low- and high-frequency ranges at source levels, using much less time and computer memory.

摘要

最近的研究揭示了高频脑信号(>70 Hz)的重要性。高频信号分析的一个挑战是,高频脑信号的时频表示的大小可能超过 1 太字节(TB),这超出了典型计算机工作站内存(<196GB)的上限。本研究的目的是开发一种新方法,以在单个自动化和多功能界面中提供更高的高频脑磁图(MEG)信号检测灵敏度,而不是更传统的、时间密集型的视觉检查方法,这些方法可能需要数天时间。为了实现这一目标,我们开发了一种新方法,即累积源成像,定义为在一段时间内对源活动的体积求和。该方法在源水平上分析低频(170 Hz)和高频(70200 Hz)范围内的信号。为了从传感器空间的 MEG 信号中提取有意义的信息,将信号分解为代表每个可能的传感器对的时空模式的通道-通道矩阵(CxC)。开发了一种新算法,并通过计算用于体积源成像的最佳 CxC 和源位置-方向权重来进行测试,从而最小化多源干扰并降低计算成本。该新方法已在 C/C++中实现,并使用从临床癫痫患者记录的 MEG 数据进行了测试。实验数据的结果表明,累积源成像可以在使用大约 10GB 计算机内存的情况下,在 12.7 小时内有效总结和可视化 MEG 记录。与传统的方法相比,传统的方法需要 2-3 天时间,并且使用 1-2TB 的存储空间,该新方法可以在源水平上定量低频频带和高频频带的癫痫异常,使用的时间和计算机内存要少得多。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验