Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA ; Departments of Chemistry, Biochemistry, and Bioengineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Biotechnol Biofuels. 2014 May 23;7:78. doi: 10.1186/1754-6834-7-78. eCollection 2014.
Furfural is a major growth inhibitor in lignocellulosic hydrolysates and improving furfural tolerance of microorganisms is critical for rapid and efficient fermentation of lignocellulosic biomass. In this study, we used the RNAi-Assisted Genome Evolution (RAGE) method to select for furfural resistant mutants of Saccharomyces cerevisiae, and identified a new determinant of furfural tolerance.
By using a genome-wide RNAi (RNA-interference) screen in S. cerevisiae for genes involved in furfural tolerance, we identified SIZ1, a gene encoding an E3 SUMO-protein ligase. Disruption of SIZ1 gene function by knockdown or deletion conferred significantly higher furfural tolerance compared to other previously reported metabolic engineering strategies in S. cerevisiae. This improved furfural tolerance of siz1Δ cells is accompanied by rapid furfural reduction to furfuryl alcohol and leads to higher ethanol productivity in the presence of furfural. In addition, the siz1Δ mutant also exhibited tolerance towards oxidative stress, suggesting that oxidative stress tolerance related proteins may be under the SUMO regulation of SIZ1p and responsible for furfural tolerance.
Using a genome-wide approach, we identified a novel determinant for furfural tolerance, providing valuable insights into the design of recombinant microbes for efficient lignocellulose fermentation.
糠醛是木质纤维素水解物中的主要生长抑制剂,提高微生物对糠醛的耐受性对于木质纤维素生物质的快速高效发酵至关重要。在本研究中,我们使用 RNA 干扰辅助基因组进化(RAGE)方法筛选出对糠醛具有抗性的酿酒酵母突变体,并鉴定出糠醛耐受性的一个新决定因素。
通过在酿酒酵母中进行全基因组 RNAi(RNA 干扰)筛选,我们鉴定出了 SIZ1 基因,该基因编码一种 E3 SUMO 蛋白连接酶。与其他先前报道的酿酒酵母代谢工程策略相比,SIZ1 基因功能的敲低或缺失导致了显著更高的糠醛耐受性。siz1Δ 细胞的这种改善的糠醛耐受性伴随着糠醛迅速还原为糠醇,并且在存在糠醛的情况下导致更高的乙醇产率。此外,siz1Δ 突变体还表现出对氧化应激的耐受性,表明与氧化应激耐受性相关的蛋白质可能受到 SIZ1p 的 SUMO 调控,并负责糠醛耐受性。
使用全基因组方法,我们鉴定出了糠醛耐受性的一个新决定因素,为设计用于高效木质纤维素发酵的重组微生物提供了有价值的见解。