Instituto de Astronomía y Física del Espacio (IAFE), UBA - CONICET, Ciudad Universitaria, Buenos Aires, Argentina.
Laboratory of Biosensors and Bioanalysis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina, Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires 1428, Argentina.
Biosens Bioelectron. 2015 Jan 15;63:591-601. doi: 10.1016/j.bios.2014.04.053. Epub 2014 May 9.
Microbial fuel cells were rediscovered twenty years ago and now are a very active research area. The reasons behind this new activity are the relatively recent discovery of electrogenic or electroactive bacteria and the vision of two important practical applications, as wastewater treatment coupled with clean energy production and power supply systems for isolated low-power sensor devices. Although some analytical applications of MFCs were proposed earlier (as biochemical oxygen demand sensing) only lately a myriad of new uses of this technology are being presented by research groups around the world, which combine both biological-microbiological and electroanalytical expertises. This is the second part of a review of MFC applications in the area of analytical sciences. In Part I a general introduction to biological-based analytical methods including bioassays, biosensors, MFCs design, operating principles, as well as, perhaps the main and earlier presented application, the use as a BOD sensor was reviewed. In Part II, other proposed uses are presented and discussed. As other microbially based analytical systems, MFCs are satisfactory systems to measure and integrate complex parameters that are difficult or impossible to measure otherwise, such as water toxicity (where the toxic effect to aquatic organisms needed to be integrated). We explore here the methods proposed to measure toxicity, microbial metabolism, and, being of special interest to space exploration, life sensors. Also, some methods with higher specificity, proposed to detect a single analyte, are presented. Different possibilities to increase selectivity and sensitivity, by using molecular biology or other modern techniques are also discussed here.
微生物燃料电池在二十年前被重新发现,如今已成为一个非常活跃的研究领域。这一新兴领域的出现有以下两个原因:一是最近发现了产电或电活性细菌,二是人们对两项重要的实际应用前景充满期待,这两项应用分别是与清洁能源生产相结合的废水处理以及为独立低功率传感器设备提供电源系统。虽然早些时候就已经提出了一些关于微生物燃料电池的分析应用(如生化需氧量感测),但直到最近,世界各地的研究团队才提出了这项技术的无数新用途,这些用途结合了生物微生物学和电化学生物学的专业知识。这是对微生物燃料电池在分析科学领域的应用的综述的第二部分。第一部分介绍了基于生物学的分析方法,包括生物测定、生物传感器、微生物燃料电池的设计、工作原理,以及可能是主要的和较早提出的应用,即作为 BOD 传感器的应用。在第二部分中,介绍并讨论了其他提议的用途。与其他基于微生物的分析系统一样,微生物燃料电池是测量和整合复杂参数的满意系统,这些复杂参数难以或无法通过其他方法进行测量,例如水毒性(需要整合对水生生物的毒性影响)。我们在这里探索了用于测量毒性、微生物代谢的方法,以及对于太空探索特别感兴趣的生命传感器。此外,还介绍了一些针对单一分析物检测的具有更高特异性的方法。还讨论了通过使用分子生物学或其他现代技术来提高选择性和灵敏度的不同可能性。