Blaesse Peter, Schmidt Tobias
Institute of Physiology I (Neurophysiology), Westfälische Wilhelms-University Münster, Robert-Koch-Strasse 27a, 48149, Münster, Germany,
Pflugers Arch. 2015 Apr;467(4):615-24. doi: 10.1007/s00424-014-1547-6. Epub 2014 Jun 10.
The K-Cl cotransporter KCC2 has two entirely independent biological actions as either an ion transporter or a structural protein orchestrating the organization of the cytoskeleton in neuronal structures. The K-Cl cotransport by KCC2 is central for hyperpolarizing inhibitory signaling, which is based on chloride currents mediated by γ-aminobutyric acid (GABA)- or glycine-gated receptor channels. In contrast, the structural role of KCC2 seems to be crucially involved in the maturation and regulation of excitatory glutamatergic synapses. This dual role at GABAergic/glycinergic and glutamatergic synapses makes KCC2 a key molecule in the regulation of inhibitory and excitatory signaling. Therefore, KCC2 is most likely involved in the synchronization of the two types of activity during network formation in the immature system and a similar synchronizing role might also be important under physiological and pathological conditions in mature neuronal networks. In this review, we explore new findings on the regulation of KCC2 by protease-mediated cleavage and on the structural role of KCC2 in spine morphogenesis and glutamate receptor clustering. We then discuss the implications of the putative interaction between the independent functions of the transporter and overlapping regulatory mechanisms in a neurophysiological context. In addition, we look at the multifunctional properties of KCC2 in the light of evolution and propose that KCC2 belongs to the group of moonlighting (multifunctional) proteins.
钾氯共转运体KCC2具有两种完全独立的生物学功能,既作为离子转运体,又作为一种结构蛋白,协调神经元结构中细胞骨架的组织。KCC2介导的钾氯共转运对于超极化抑制信号传导至关重要,该信号传导基于由γ-氨基丁酸(GABA)或甘氨酸门控受体通道介导的氯离子电流。相比之下,KCC2的结构作用似乎在兴奋性谷氨酸能突触的成熟和调节中起关键作用。KCC2在GABA能/甘氨酸能和谷氨酸能突触中的这种双重作用使其成为调节抑制性和兴奋性信号传导的关键分子。因此,KCC2很可能在未成熟系统网络形成过程中参与两种类型活动的同步,并且在成熟神经元网络的生理和病理条件下,类似的同步作用可能也很重要。在这篇综述中,我们探讨了蛋白酶介导的切割对KCC2的调节以及KCC2在棘突形态发生和谷氨酸受体聚集方面的结构作用的新发现。然后,我们在神经生理学背景下讨论了转运体独立功能与重叠调节机制之间假定相互作用的意义。此外,我们从进化的角度审视了KCC2的多功能特性,并提出KCC2属于兼职(多功能)蛋白类别。