Hess Jaqueline, Skrede Inger, Wolfe Benjamin E, LaButti Kurt, Ohm Robin A, Grigoriev Igor V, Pringle Anne
Department of Organismic and Evolutionary Biology, Harvard University
Department of Organismic and Evolutionary Biology, Harvard UniversitySection for Genetics and Evolutionary Biology, University of Oslo, Norway.
Genome Biol Evol. 2014 Jun 12;6(7):1564-78. doi: 10.1093/gbe/evu121.
Transposable elements (TEs) are ubiquitous inhabitants of eukaryotic genomes and their proliferation and dispersal shape genome architectures and diversity. Nevertheless, TE dynamics are often explored for one species at a time and are rarely considered in ecological contexts. Recent work with plant pathogens suggests a link between symbiosis and TE abundance. The genomes of pathogenic fungi appear to house an increased abundance of TEs, and TEs are frequently associated with the genes involved in symbiosis. To investigate whether this pattern is general, and relevant to mutualistic plant-fungal symbioses, we sequenced the genomes of related asymbiotic (AS) and ectomycorrhizal (ECM) Amanita fungi. Using methods developed to interrogate both assembled and unassembled sequences, we characterized and quantified TEs across three AS and three ECM species, including the AS outgroup Volvariella volvacea. The ECM genomes are characterized by abundant numbers of TEs, an especially prominent feature of unassembled sequencing libraries. Increased TE activity in ECM species is also supported by phylogenetic analysis of the three most abundant TE superfamilies; phylogenies revealed many radiations within contemporary ECM species. However, the AS species Amanita thiersii also houses extensive amplifications of elements, highlighting the influence of additional evolutionary parameters on TE abundance. Our analyses provide further evidence for a link between symbiotic associations among plants and fungi, and increased TE activity, while highlighting the importance individual species' natural histories may have in shaping genome architecture.
转座元件(TEs)是真核生物基因组中普遍存在的组成部分,它们的增殖和扩散塑造了基因组结构和多样性。然而,人们通常一次只对一个物种的转座元件动态进行研究,很少在生态背景下加以考虑。最近对植物病原体的研究表明共生与转座元件丰度之间存在联系。致病真菌的基因组似乎含有数量更多的转座元件,并且转座元件常常与参与共生的基因相关联。为了探究这种模式是否具有普遍性,以及是否与植物 - 真菌互利共生有关,我们对相关的非共生(AS)和外生菌根(ECM)鹅膏菌属真菌的基因组进行了测序。我们使用开发出来的用于分析已组装和未组装序列的方法,对三个非共生物种和三个外生菌根物种中的转座元件进行了表征和定量,其中包括非共生外类群草菇。外生菌根基因组的特征是含有大量的转座元件,这在未组装的测序文库中表现得尤为突出。对三个最丰富的转座元件超家族的系统发育分析也支持了外生菌根物种中转座元件活性的增加;系统发育树揭示了当代外生菌根物种中有许多辐射现象。然而,非共生物种蒂氏鹅膏菌也含有大量扩增的元件,这突出了其他进化参数对转座元件丰度的影响。我们的分析进一步证明了植物与真菌之间的共生关系和转座元件活性增加之间的联系,同时强调了单个物种的自然史在塑造基因组结构中可能具有的重要性。