Milani Pascale, Mirabet Vincent, Cellier Coralie, Rozier Frédérique, Hamant Olivier, Das Pradeep, Boudaoud Arezki
Reproduction et Développement des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique (P.M., V.M., C.C., F.R., O.H., P.D., A.B.), and Laboratoire Joliot-Curie, Centre National de la Recherche Scientifique (P.M., V.M., O.H., P.D., A.B.), Ecole Normal Supérieure de Lyon, Université de Lyon, 69364 Lyon cedex 07, France.
Reproduction et Développement des Plantes, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique (P.M., V.M., C.C., F.R., O.H., P.D., A.B.), and Laboratoire Joliot-Curie, Centre National de la Recherche Scientifique (P.M., V.M., O.H., P.D., A.B.), Ecole Normal Supérieure de Lyon, Université de Lyon, 69364 Lyon cedex 07, France
Plant Physiol. 2014 Aug;165(4):1399-1408. doi: 10.1104/pp.114.237115. Epub 2014 Jun 12.
Cell differentiation has been associated with changes in mechanical stiffness in single-cell systems, yet it is unknown whether this association remains true in a multicellular context, particularly in developing tissues. In order to address such questions, we have developed a methodology, termed quantitative tandem epifluorescence and nanoindentation, wherein we sequentially determine cellular genetic identity with confocal microscopy and mechanical properties with atomic force microscopy. We have applied this approach to examine cellular stiffness at the shoot apices of Arabidopsis (Arabidopsis thaliana) plants carrying a fluorescent reporter for the CLAVATA3 (CLV3) gene, which encodes a secreted glycopeptide involved in the regulation of the centrally located stem cell zone in inflorescence and floral meristems. We found that these CLV3-expressing cells are characterized by an enhanced stiffness. Additionally, by tracking cells in young flowers before and after the onset of GREEN FLUORESCENT PROTEIN expression, we observed that an increase in stiffness coincides with this onset. This work illustrates how quantitative tandem epifluorescence and nanoindentation can reveal the spatial and temporal dynamics of both gene expression and cell mechanics at the shoot apex and, by extension, in the epidermis of any thick tissue.
细胞分化与单细胞系统中的机械硬度变化有关,但在多细胞环境中,尤其是在发育中的组织中,这种关联是否仍然成立尚不清楚。为了解决此类问题,我们开发了一种方法,称为定量串联落射荧光和纳米压痕法,其中我们先用共聚焦显微镜依次确定细胞的遗传身份,再用原子力显微镜确定其机械性能。我们已将此方法应用于检测携带CLAVATA3(CLV3)基因荧光报告基因的拟南芥植株茎尖的细胞硬度,该基因编码一种分泌型糖肽,参与调控花序和花分生组织中位于中心的干细胞区。我们发现,这些表达CLV3的细胞具有增强的硬度。此外,通过追踪绿色荧光蛋白表达开始前后幼花中的细胞,我们观察到硬度增加与该表达开始同时发生。这项工作说明了定量串联落射荧光和纳米压痕法如何揭示茎尖以及由此延伸到任何厚组织表皮中基因表达和细胞力学的时空动态。