Suppr超能文献

NLRP1B 的不同区域需要对炭疽致死毒素和代谢抑制作出反应。

Distinct regions of NLRP1B are required to respond to anthrax lethal toxin and metabolic inhibition.

机构信息

Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.

Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada

出版信息

Infect Immun. 2014 Sep;82(9):3697-703. doi: 10.1128/IAI.02167-14. Epub 2014 Jun 16.

Abstract

Pattern recognition receptors monitor for signs of infection or cellular dysfunction and respond to these events by initiating an immune response. NLRP1B is a receptor that upon activation recruits multiple copies of procaspase-1, which promotes cytokine processing and a proinflammatory form of cell death termed pyroptosis. NLRP1B detects anthrax lethal toxin when the toxin cleaves an amino-terminal fragment from the protein. In addition, NLRP1B is activated when cells are deprived of glucose or treated with metabolic inhibitors, but the mechanism by which the resulting reduction in cytosolic ATP is sensed by NLRP1B is unknown. Here, we addressed whether these two activating signals of NLRP1B converge on a common sensing system. We show that an NLRP1B mutant lacking the amino-terminal region exhibits some spontaneous activity and fails to be further activated by lethal toxin. This mutant was still activated in cells depleted of ATP, however, indicating that the amino-terminal region is not the sole sensing domain of NLRP1B. Mutagenesis of the leucine-rich repeat domain of NLRP1B provided evidence that this domain is involved in autoinhibition of the receptor, but none of the mutants tested was specifically defective at sensing activating signals. Comparison of two alleles of NLRP1B that differed in their response to metabolic inhibitors, but not to lethal toxin, led to the finding that a repeated sequence in the function to find domain (FIIND) that arose from exon duplication facilitated detection of ATP depletion. These results suggest that distinct regions of NLRP1B detect activating signals.

摘要

模式识别受体监测感染或细胞功能障碍的迹象,并通过启动免疫反应来对这些事件作出反应。NLRP1B 是一种受体,在被激活后会招募多个前半胱天冬酶-1 拷贝,从而促进细胞因子的加工和一种称为细胞焦亡的促炎形式的细胞死亡。NLRP1B 在炭疽致死毒素切割蛋白的氨基末端片段时检测到该毒素。此外,当细胞被剥夺葡萄糖或用代谢抑制剂处理时,NLRP1B 会被激活,但细胞溶质 ATP 减少如何被 NLRP1B 感知的机制尚不清楚。在这里,我们研究了 NLRP1B 的这两种激活信号是否集中在一个共同的感应系统上。我们表明,一种缺乏氨基末端区域的 NLRP1B 突变体表现出一些自发活性,并且不能被致死毒素进一步激活。然而,这种突变体在耗尽 ATP 的细胞中仍然被激活,表明氨基末端区域不是 NLRP1B 的唯一感应结构域。NLRP1B 的富含亮氨酸重复结构域的突变提供了证据,表明该结构域参与了受体的自身抑制,但测试的突变体都没有在检测激活信号方面表现出特异性缺陷。对 NLRP1B 的两种等位基因的比较表明,它们对代谢抑制剂的反应不同,但对致死毒素的反应相同,这导致了一个发现在功能领域的重复序列(FIIND),它是由外显子重复产生的,有助于检测到 ATP 耗竭。这些结果表明,NLRP1B 的不同区域检测激活信号。

相似文献

6
BPTES inhibits anthrax lethal toxin-induced inflammatory response.BPTES 抑制炭疽致死毒素诱导的炎症反应。
Int Immunopharmacol. 2020 Aug;85:106664. doi: 10.1016/j.intimp.2020.106664. Epub 2020 Jun 7.

引用本文的文献

2
Inflammasomes and their role in PANoptosomes.炎性小体及其在 PANoptosomes 中的作用。
Curr Opin Immunol. 2024 Dec;91:102489. doi: 10.1016/j.coi.2024.102489. Epub 2024 Sep 27.
3
Activation of the NLRP1B inflammasome by caspase-8.NLRP1B 炎性小体被半胱天冬酶-8 激活。
Commun Biol. 2024 Sep 17;7(1):1164. doi: 10.1038/s42003-024-06882-3.
4
The NLR gene family: from discovery to present day.NLR 基因家族:从发现到现在。
Nat Rev Immunol. 2023 Oct;23(10):635-654. doi: 10.1038/s41577-023-00849-x. Epub 2023 Mar 27.
7
The NLRP1 and CARD8 inflammasomes.NLRP1 和 CARD8 炎性小体。
Immunol Rev. 2020 Sep;297(1):13-25. doi: 10.1111/imr.12884. Epub 2020 Jun 19.
8

本文引用的文献

4
Mechanisms of cellular invasion by intracellular parasites.细胞内寄生虫侵袭细胞的机制。
Cell Mol Life Sci. 2014 Apr;71(7):1245-63. doi: 10.1007/s00018-013-1491-1. Epub 2013 Nov 13.
5
NLRP1 is an inflammasome sensor for Toxoplasma gondii.NLRP1 是刚地弓形虫的炎症小体传感器。
Infect Immun. 2014 Jan;82(1):460-8. doi: 10.1128/IAI.01170-13. Epub 2013 Nov 11.
7
Crystal structure of NLRC4 reveals its autoinhibition mechanism.NLRC4 晶体结构揭示其自身抑制机制。
Science. 2013 Jul 12;341(6142):172-5. doi: 10.1126/science.1236381. Epub 2013 Jun 13.
8
Activation and regulation of the inflammasomes.炎症小体的激活与调控。
Nat Rev Immunol. 2013 Jun;13(6):397-411. doi: 10.1038/nri3452.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验