Suppr超能文献

用于在32×32个工作电极上以每秒90帧的速度进行电化学测量的全集成CMOS微系统。

Fully integrated CMOS microsystem for electrochemical measurements on 32 × 32 working electrodes at 90 frames per second.

作者信息

Rothe Joerg, Frey Olivier, Stettler Alexander, Chen Yihui, Hierlemann Andreas

机构信息

ETH Zurich , Mattenstrasse 26, Basel, 4058, Switzerland.

出版信息

Anal Chem. 2014 Jul 1;86(13):6425-32. doi: 10.1021/ac500862v. Epub 2014 Jun 18.

Abstract

Microelectrode arrays offer the potential to electrochemically monitor concentrations of molecules at high spatial resolution. However, current systems are limited in the number of sensor sites, signal resolution, and throughput. Here, we present a fully integrated complementary metal oxide semiconductor (CMOS) system with an array of 32 × 32 working electrodes to perform electrochemical measurements like amperometry and voltammetry. The array consists of platinum electrodes with a center-to-center distance of 100 μm and electrode diameters of 5 to 50 μm. Currents in the range from 10 μA down to pA can be measured. The current is digitized by sigma-delta converters at a maximum resolution of 13.3 bits. The integrated noise is 220 fA for a bandwidth of 100 Hz, allowing for detection of pA currents. Currents can be continuously acquired at up to 1 kHz bandwidth, or the whole array can be read out rapidly at a frame rate of up to 90 Hz. The results of the electrical characterization meet the requirements of a wide range of electrochemical methods including cyclic voltammograms and amperometric images of high spatial and temporal resolution.

摘要

微电极阵列提供了在高空间分辨率下以电化学方式监测分子浓度的潜力。然而,当前系统在传感器位点数量、信号分辨率和通量方面存在限制。在此,我们展示了一种完全集成的互补金属氧化物半导体(CMOS)系统,该系统具有一个32×32工作电极阵列,用于执行诸如安培法和伏安法等电化学测量。该阵列由中心距为100μm且电极直径为5至50μm的铂电极组成。可测量范围从10μA到pA的电流。电流由Σ-Δ转换器数字化,最大分辨率为13.3位。对于100Hz的带宽,集成噪声为220fA,允许检测pA电流。电流可以在高达1kHz的带宽下连续采集,或者整个阵列可以以高达90Hz的帧率快速读出。电学表征结果满足包括高空间和时间分辨率的循环伏安图和安培图像在内的广泛电化学方法的要求。

相似文献

2
On-Chip Cyclic Voltammetry Measurements Using a Compact 1024-Electrode CMOS IC.
Anal Chem. 2021 Jun 8;93(22):8027-8034. doi: 10.1021/acs.analchem.1c01132. Epub 2021 May 26.
3
Amperometric electrochemical microsystem for a miniaturized protein biosensor array.
IEEE Trans Biomed Circuits Syst. 2009 Jun;3(3):160-8. doi: 10.1109/TBCAS.2009.2015650.
4
CMOS Amperometric Instrumentation and Packaging for Biosensor Array Applications.
IEEE Trans Biomed Circuits Syst. 2011 Oct;5(5):439-48. doi: 10.1109/TBCAS.2011.2171339.
5
Spatiotemporal norepinephrine mapping using a high-density CMOS microelectrode array.
Lab Chip. 2015 Oct 21;15(20):4075-82. doi: 10.1039/c5lc00778j. Epub 2015 Sep 3.
6
An Integrated Biosensor System With a High-Density Microelectrode Array for Real-Time Electrochemical Imaging.
IEEE Trans Biomed Circuits Syst. 2020 Feb;14(1):20-35. doi: 10.1109/TBCAS.2019.2953579. Epub 2019 Nov 15.
9
SiNAPS: An implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings.
Biosens Bioelectron. 2019 Feb 1;126:355-364. doi: 10.1016/j.bios.2018.10.032. Epub 2018 Oct 19.
10
Development of Microelectrode Arrays Using Electroless Plating for CMOS-Based Direct Counting of Bacterial and HeLa Cells.
IEEE Trans Biomed Circuits Syst. 2015 Oct;9(5):607-19. doi: 10.1109/TBCAS.2015.2479656. Epub 2015 Nov 6.

引用本文的文献

2
Improving engineered biological systems with electronics and microfluidics.
Nat Biotechnol. 2025 Jun 27. doi: 10.1038/s41587-025-02709-6.
3
Direct Single-Impact Electrochemistry Using Silver Nanoparticles as a "Digital" Readout for Biosensing Applications.
ACS Sens. 2025 Jun 27;10(6):3840-3853. doi: 10.1021/acssensors.5c00064. Epub 2025 Jun 14.
4
Single-Response Duplexing of Electrochemical Label-Free Biosensor from the Same Tag.
Adv Healthc Mater. 2024 Apr;13(11):e2303509. doi: 10.1002/adhm.202303509. Epub 2024 Feb 22.
5
Ordered Mesoporous Electrodes for Sensing Applications.
ACS Omega. 2023 Jun 29;8(27):24128-24152. doi: 10.1021/acsomega.3c02013. eCollection 2023 Jul 11.
6
CMOS electrochemical pH localizer-imager.
Sci Adv. 2022 Jul 29;8(30):eabm6815. doi: 10.1126/sciadv.abm6815. Epub 2022 Jul 27.
7
Impedance Imaging of Cells and Tissues: Design and Applications.
BME Front. 2022 Jun 9;2022:1-21. doi: 10.34133/2022/9857485.
8
Bipolar Electrode Arrays for Chemical Imaging and Multiplexed Sensing.
ACS Omega. 2022 Jun 3;7(23):20298-20305. doi: 10.1021/acsomega.2c02298. eCollection 2022 Jun 14.
9
Multisite Dopamine Sensing With Femtomolar Resolution Using a CMOS Enabled Aptasensor Chip.
Front Neurosci. 2022 Jun 3;16:875656. doi: 10.3389/fnins.2022.875656. eCollection 2022.

本文引用的文献

3
CMOS neurotransmitter microarray: 96-channel integrated potentiostat with on-die microsensors.
IEEE Trans Biomed Circuits Syst. 2013 Jun;7(3):338-48. doi: 10.1109/TBCAS.2012.2203597.
4
Wireless micropower instrumentation for multimodal acquisition of electrical and chemical neural activity.
IEEE Trans Biomed Circuits Syst. 2009 Dec;3(6):388-97. doi: 10.1109/TBCAS.2009.2031877.
5
16-channel CMOS impedance spectroscopy DNA analyzer with dual-slope multiplying ADCs.
IEEE Trans Biomed Circuits Syst. 2012 Oct;6(5):468-78. doi: 10.1109/TBCAS.2012.2226334.
6
A Wireless IC for Wide-Range Neurochemical Monitoring Using Amperometry and Fast-Scan Cyclic Voltammetry.
IEEE Trans Biomed Circuits Syst. 2008 Mar;2(1):3-9. doi: 10.1109/TBCAS.2008.918282.
7
VLSI Potentiostat Array With Oversampling Gain Modulation for Wide-Range Neurotransmitter Sensing.
IEEE Trans Biomed Circuits Syst. 2007 Mar;1(1):63-72. doi: 10.1109/TBCAS.2007.893176.
8
A new diamond biosensor with integrated graphitic microchannels for detecting quantal exocytic events from chromaffin cells.
Adv Mater. 2013 Sep 14;25(34):4696-700. doi: 10.1002/adma.201300710. Epub 2013 Jul 12.
9
LSI-based amperometric sensor for real-time monitoring of embryoid bodies.
Biosens Bioelectron. 2013 Oct 15;48:12-8. doi: 10.1016/j.bios.2013.03.069. Epub 2013 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验