Magadán Javier G, Altman Meghan O, Ince William L, Hickman Heather D, Stevens James, Chevalier Aaron, Baker David, Wilson Patrick C, Ahmed Rafi, Bennink Jack R, Yewdell Jonathan W
Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America.
Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America.
PLoS Pathog. 2014 Jun 12;10(6):e1004204. doi: 10.1371/journal.ppat.1004204. eCollection 2014 Jun.
Antigenic variation in the globular domain of influenza A virus (IAV) hemagglutinin (HA) precludes effective immunity to this major human pathogen. Although the HA stem is highly conserved between influenza virus strains, HA stem-reactive antibodies (StRAbs) were long considered biologically inert. It is now clear, however, that StRAbs reduce viral replication in animal models and protect against pathogenicity and death, supporting the potential of HA stem-based immunogens as drift-resistant vaccines. Optimally designing StRAb-inducing immunogens and understanding StRAb effector functions require thorough comprehension of HA stem structure and antigenicity. Here, we study the biogenesis of HA stem epitopes recognized in cells infected with various drifted IAV H1N1 strains using mouse and human StRAbs. Using a novel immunofluorescence (IF)-based assay, we find that human StRAbs bind monomeric HA in the endoplasmic reticulum (ER) and trimerized HA in the Golgi complex (GC) with similar high avidity, potentially good news for producing effective monomeric HA stem immunogens. Though HA stem epitopes are nestled among several N-linked oligosaccharides, glycosylation is not required for full antigenicity. Rather, as N-linked glycans increase in size during intracellular transport of HA through the GC, StRAb binding becomes temperature-sensitive, binding poorly to HA at 4°C and well at 37°C. A de novo designed, 65-residue protein binds the mature HA stem independently of temperature, consistent with a lack of N-linked oligosaccharide steric hindrance due to its small size. Likewise, StRAbs bind recombinant HA carrying simple N-linked glycans in a temperature-independent manner. Chemical cross-linking experiments show that N-linked oligosaccharides likely influence StRAb binding by direct local effects rather than by globally modifying the conformational flexibility of HA. Our findings indicate that StRAb binding to HA is precarious, raising the possibility that sufficient immune pressure on the HA stem region could select for viral escape mutants with increased steric hindrance from N-linked glycans.
甲型流感病毒(IAV)血凝素(HA)球状结构域中的抗原变异使得针对这种主要人类病原体无法产生有效的免疫力。尽管HA茎在流感病毒株之间高度保守,但长期以来,HA茎反应性抗体(StRAbs)被认为在生物学上是无活性的。然而,现在很清楚的是,StRAbs在动物模型中可减少病毒复制,并预防致病性和死亡,这支持了基于HA茎的免疫原作为抗漂移疫苗的潜力。要优化设计诱导StRAbs的免疫原并了解StRAb效应功能,需要全面理解HA茎的结构和抗原性。在这里,我们使用小鼠和人类StRAbs研究了在感染各种漂移的IAV H1N1毒株的细胞中识别的HA茎表位的生物发生。使用一种基于新型免疫荧光(IF)的检测方法,我们发现人类StRAbs以相似的高亲和力结合内质网(ER)中的单体HA和高尔基体复合物(GC)中的三聚体HA,这对于生产有效的单体HA茎免疫原来说可能是个好消息。尽管HA茎表位位于几个N-连接寡糖之间,但完全抗原性并不需要糖基化。相反,随着HA在细胞内通过GC转运过程中N-连接聚糖大小增加,StRAb结合变得对温度敏感,在4°C时与HA结合不佳,而在37°C时结合良好。一个从头设计的65个残基蛋白独立于温度结合成熟的HA茎,这与其小尺寸导致缺乏N-连接寡糖空间位阻一致。同样,StRAbs以不依赖温度的方式结合携带简单N-连接聚糖的重组HA。化学交联实验表明,N-连接寡糖可能通过直接的局部效应而非通过全局改变HA的构象灵活性来影响StRAb结合。我们的研究结果表明,StRAb与HA的结合不稳定,这增加了一种可能性,即对HA茎区域施加足够的免疫压力可能会选择出因N-连接聚糖产生更大空间位阻而出现的病毒逃逸突变体。