Suppr超能文献

剪切力增强血小板生成以及诱导干细胞巨核细胞分化的微粒的形成。

Shear enhances thrombopoiesis and formation of microparticles that induce megakaryocytic differentiation of stem cells.

作者信息

Jiang Jinlin, Woulfe Donna S, Papoutsakis Eleftherios T

机构信息

Department of Chemical and Biomolecular Engineering, Delaware Biotechnology Institute, and.

Department of Biological Sciences, University of Delaware, Newark, DE.

出版信息

Blood. 2014 Sep 25;124(13):2094-103. doi: 10.1182/blood-2014-01-547927. Epub 2014 Jun 19.

Abstract

In vivo visualization of thrombopoiesis suggests an important role for shear flow in platelet biogenesis. In vitro, shear stress was shown to accelerate proplatelet formation from mature megakaryocytes (Mks). Yet, the role of biomechanical forces on Mk biology and platelet biogenesis remains largely unexplored. In this study, we investigated the impact of shear stress on Mk maturation and formation of platelet-like particles (PLPs), pro/preplatelets (PPTs), and Mk microparticles (MkMPs), and furthermore, we explored a physiological role for MkMPs. We found that shear accelerated DNA synthesis of immature Mks in an exposure time- and shear stress level-dependent manner. Both phosphatidylserine exposure and caspase-3 activation were enhanced by shear stress. Exposure to physiological shear dramatically increased generation of PLPs/PPTs and MkMPs by up to 10.8 and 47-fold, respectively. Caspase-3 inhibition reduced shear-induced PLP/PPT and MkMP formation. PLPs generated under shear flow displayed improved functionality as assessed by CD62P exposure and fibrinogen binding. Significantly, coculture of MkMPs with hematopoietic stem and progenitor cells promoted hematopoietic stem and progenitor cell differentiation to mature Mks synthesizing α- and dense-granules, and forming PPTs without exogenous thrombopoietin, thus identifying a novel and unexplored potential physiological role for MkMPs.

摘要

体内血小板生成的可视化表明剪切流在血小板生物发生中起重要作用。在体外,剪切应力被证明可加速成熟巨核细胞(Mk)形成前血小板。然而,生物力学力对Mk生物学和血小板生物发生的作用在很大程度上仍未被探索。在本研究中,我们研究了剪切应力对Mk成熟以及血小板样颗粒(PLP)、前/前血小板(PPT)和Mk微粒(MkMP)形成的影响,此外,我们还探索了MkMP的生理作用。我们发现剪切以暴露时间和剪切应力水平依赖性方式加速未成熟Mk的DNA合成。剪切应力增强了磷脂酰丝氨酸暴露和半胱天冬酶-3激活。暴露于生理剪切显著增加了PLP/PPT和MkMP的生成,分别高达10.8倍和47倍。半胱天冬酶-3抑制减少了剪切诱导的PLP/PPT和MkMP形成。通过CD62P暴露和纤维蛋白原结合评估,在剪切流下产生的PLP显示出改善的功能。重要的是,MkMP与造血干细胞和祖细胞共培养促进了造血干细胞和祖细胞分化为合成α颗粒和致密颗粒并形成PPT的成熟Mk,而无需外源性血小板生成素,从而确定了MkMP一种新的未被探索的潜在生理作用。

相似文献

1
Shear enhances thrombopoiesis and formation of microparticles that induce megakaryocytic differentiation of stem cells.
Blood. 2014 Sep 25;124(13):2094-103. doi: 10.1182/blood-2014-01-547927. Epub 2014 Jun 19.
3
How do megakaryocytic microparticles target and deliver cargo to alter the fate of hematopoietic stem cells?
J Control Release. 2017 Feb 10;247:1-18. doi: 10.1016/j.jconrel.2016.12.021. Epub 2016 Dec 24.
7
Three-Dimensional Environment Sustains Hematopoietic Stem Cell Differentiation into Platelet-Producing Megakaryocytes.
PLoS One. 2015 Aug 27;10(8):e0136652. doi: 10.1371/journal.pone.0136652. eCollection 2015.
8
OP9 bone marrow stroma cells differentiate into megakaryocytes and platelets.
PLoS One. 2013;8(3):e58123. doi: 10.1371/journal.pone.0058123. Epub 2013 Mar 1.
9
miRNAs can increase the efficiency of ex vivo platelet generation.
Ann Hematol. 2012 Nov;91(11):1673-84. doi: 10.1007/s00277-012-1517-z. Epub 2012 Jul 5.
10

引用本文的文献

1
Association of microtubule destabilization with platelet yields in terminally differentiating hiPSC-derived megakaryocyte lines.
PLoS One. 2025 Jun 25;20(6):e0326165. doi: 10.1371/journal.pone.0326165. eCollection 2025.
2
Immunological face of megakaryocytes.
Front Med. 2024 Dec;18(6):988-1001. doi: 10.1007/s11684-024-1087-1. Epub 2024 Nov 14.
4
Physical modulation of mesenchymal stem cell exosomes: A new perspective for regenerative medicine.
Cell Prolif. 2024 Aug;57(8):e13630. doi: 10.1111/cpr.13630. Epub 2024 Mar 10.
6
Megakaryocyte membrane-wrapped nanoparticles for targeted cargo delivery to hematopoietic stem and progenitor cells.
Bioeng Transl Med. 2022 Nov 29;8(3):e10456. doi: 10.1002/btm2.10456. eCollection 2023 May.
7
Extracellular vesicle-mediated remodeling of the bone marrow microenvironment in myeloid malignancies.
Int J Hematol. 2023 Jun;117(6):821-829. doi: 10.1007/s12185-023-03587-x. Epub 2023 Apr 12.
9
Nanoparticles targeting hematopoietic stem and progenitor cells: Multimodal carriers for the treatment of hematological diseases.
Front Genome Ed. 2022 Nov 2;4:1030285. doi: 10.3389/fgeed.2022.1030285. eCollection 2022.

本文引用的文献

3
Three-stage ex vivo expansion of high-ploidy megakaryocytic cells: toward large-scale platelet production.
Tissue Eng Part A. 2013 Apr;19(7-8):998-1014. doi: 10.1089/ten.TEA.2011.0111. Epub 2013 Jan 14.
4
Macrophage microvesicles induce macrophage differentiation and miR-223 transfer.
Blood. 2013 Feb 7;121(6):984-95. doi: 10.1182/blood-2011-08-374793. Epub 2012 Nov 9.
5
Platelets in lung biology.
Annu Rev Physiol. 2013;75:569-91. doi: 10.1146/annurev-physiol-030212-183752. Epub 2012 Oct 1.
6
Fluid shear stress induces differentiation of circulating phenotype endothelial progenitor cells.
Am J Physiol Cell Physiol. 2012 Sep 15;303(6):C595-606. doi: 10.1152/ajpcell.00133.2012. Epub 2012 Jun 27.
8
Mcl-1 and Bcl-x(L) coordinately regulate megakaryocyte survival.
Blood. 2012 Jun 14;119(24):5850-8. doi: 10.1182/blood-2011-12-398834. Epub 2012 Feb 28.
9
Lapatinib induces autophagy, apoptosis and megakaryocytic differentiation in chronic myelogenous leukemia K562 cells.
PLoS One. 2011;6(12):e29014. doi: 10.1371/journal.pone.0029014. Epub 2011 Dec 22.
10
Apoptosis in the anucleate platelet.
Blood Rev. 2012 Mar;26(2):51-63. doi: 10.1016/j.blre.2011.10.002. Epub 2011 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验