Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112.
Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261.
J Neurosci. 2014 Jun 18;34(25):8474-87. doi: 10.1523/JNEUROSCI.0409-14.2014.
During synaptic development, presynaptic differentiation occurs as an intrinsic property of axons to form specialized areas of plasma membrane [active zones (AZs)] that regulate exocytosis and endocytosis of synaptic vesicles. Genetic and biochemical studies in vertebrate and invertebrate model systems have identified a number of proteins involved in AZ assembly. However, elucidating the molecular events of AZ assembly in a spatiotemporal manner remains a challenge. Syd-1 (synapse defective-1) and Liprin-α have been identified as two master organizers of AZ assembly. Genetic and imaging analyses in invertebrates show that Syd-1 works upstream of Liprin-α in synaptic assembly through undefined mechanisms. To understand molecular pathways downstream of Liprin-α, we performed a proteomic screen of Liprin-α-interacting proteins in Drosophila brains. We identify Drosophila protein phosphatase 2A (PP2A) regulatory subunit B' [Wrd (Well Rounded)] as a Liprin-α-interacting protein, and we demonstrate that it mediates the interaction of Liprin-α with PP2A holoenzyme and the Liprin-α-dependent synaptic localization of PP2A. Interestingly, loss of function in syd-1, liprin-α, or wrd shares a common defect in which a portion of synaptic vesicles, dense-core vesicles, and presynaptic cytomatrix proteins ectopically accumulate at the distal, but not proximal, region of motoneuron axons. Strong genetic data show that a linear syd-1/liprin-α/wrd pathway in the motoneuron antagonizes glycogen synthase kinase-3β kinase activity to prevent the ectopic accumulation of synaptic materials. Furthermore, we provide data suggesting that the syd-1/liprin-α/wrd pathway stabilizes AZ specification at the nerve terminal and that such a novel function is independent of the roles of syd-1/liprin-α in regulating the morphology of the T-bar structural protein BRP (Bruchpilot).
在突触发育过程中,轴突作为一种内在特性发生突触前分化,形成调节突触小泡胞吐和胞吞作用的特化质膜区域[活性区(AZ)]。脊椎动物和无脊椎动物模型系统的遗传和生化研究已经确定了许多参与 AZ 组装的蛋白质。然而,以时空方式阐明 AZ 组装的分子事件仍然是一个挑战。Syd-1(突触缺陷-1)和 Liprin-α 已被确定为 AZ 组装的两个主要组织者。无脊椎动物的遗传和成像分析表明,Syd-1 通过未定义的机制在突触组装中作为 Liprin-α 的上游发挥作用。为了了解 Liprin-α 下游的分子途径,我们在果蝇脑中进行了 Liprin-α 相互作用蛋白的蛋白质组学筛选。我们确定果蝇蛋白磷酸酶 2A(PP2A)调节亚基 B'[Wrd(Well Rounded)]是 Liprin-α 的相互作用蛋白,并证明它介导 Liprin-α 与 PP2A 全酶的相互作用以及 Liprin-α 依赖性 PP2A 的突触定位。有趣的是,syd-1、liprin-α 或 wrd 的功能丧失在突触小泡、致密核心小泡和突触前细胞基质蛋白的一部分异位积聚在运动神经元轴突的远端而不是近端区域方面具有共同缺陷。强有力的遗传数据表明,运动神经元中的线性 syd-1/liprin-α/wrd 途径拮抗糖原合酶激酶-3β 激酶活性,以防止突触物质的异位积聚。此外,我们提供的数据表明,syd-1/liprin-α/wrd 途径稳定神经末梢的 AZ 特异性,并且这种新功能独立于 syd-1/liprin-α 在调节 T 形结构蛋白 BRP(Bruchpilot)的形态中的作用。