Suppr超能文献

利用大规模药物-蛋白质相互作用信息进行药物再利用的计算

Exploiting large-scale drug-protein interaction information for computational drug repurposing.

作者信息

Liu Ruifeng, Singh Narender, Tawa Gregory J, Wallqvist Anders, Reifman Jaques

机构信息

Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U,S, Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA.

出版信息

BMC Bioinformatics. 2014 Jun 20;15:210. doi: 10.1186/1471-2105-15-210.

Abstract

BACKGROUND

Despite increased investment in pharmaceutical research and development, fewer and fewer new drugs are entering the marketplace. This has prompted studies in repurposing existing drugs for use against diseases with unmet medical needs. A popular approach is to develop a classification model based on drugs with and without a desired therapeutic effect. For this approach to be statistically sound, it requires a large number of drugs in both classes. However, given few or no approved drugs for the diseases of highest medical urgency and interest, different strategies need to be investigated.

RESULTS

We developed a computational method termed "drug-protein interaction-based repurposing" (DPIR) that is potentially applicable to diseases with very few approved drugs. The method, based on genome-wide drug-protein interaction information and Bayesian statistics, first identifies drug-protein interactions associated with a desired therapeutic effect. Then, it uses key drug-protein interactions to score other drugs for their potential to have the same therapeutic effect.

CONCLUSIONS

Detailed cross-validation studies using United States Food and Drug Administration-approved drugs for hypertension, human immunodeficiency virus, and malaria indicated that DPIR provides robust predictions. It achieves high levels of enrichment of drugs approved for a disease even with models developed based on a single drug known to treat the disease. Analysis of our model predictions also indicated that the method is potentially useful for understanding molecular mechanisms of drug action and for identifying protein targets that may potentiate the desired therapeutic effects of other drugs (combination therapies).

摘要

背景

尽管在药物研发方面的投资不断增加,但进入市场的新药却越来越少。这促使人们开展研究,将现有药物重新用于治疗尚未满足医疗需求的疾病。一种常用的方法是基于具有或不具有预期治疗效果的药物开发分类模型。要使这种方法在统计学上合理,两类药物都需要大量样本。然而,鉴于针对最急需且受关注疾病的获批药物很少或没有,需要研究不同的策略。

结果

我们开发了一种名为“基于药物 - 蛋白质相互作用的药物重新利用”(DPIR)的计算方法,该方法可能适用于获批药物极少的疾病。该方法基于全基因组药物 - 蛋白质相互作用信息和贝叶斯统计,首先识别与预期治疗效果相关的药物 - 蛋白质相互作用。然后,利用关键的药物 - 蛋白质相互作用对其他药物具有相同治疗效果的潜力进行评分。

结论

使用美国食品药品监督管理局批准的用于治疗高血压、人类免疫缺陷病毒和疟疾的药物进行的详细交叉验证研究表明,DPIR 提供了可靠的预测。即使基于已知治疗某种疾病的单一药物开发模型,它也能实现针对该疾病获批药物的高度富集。对我们模型预测结果的分析还表明,该方法可能有助于理解药物作用的分子机制,以及识别可能增强其他药物(联合疗法)预期治疗效果的蛋白质靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5df/4079911/bdf0bea86e79/1471-2105-15-210-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验