Suppr超能文献

药物重定位:一种通过数据集成的机器学习方法。

Drug repositioning: a machine-learning approach through data integration.

机构信息

Research Unit of Molecular Medicine, University of Helsinki, Helsinki, Finland.

出版信息

J Cheminform. 2013 Jun 22;5(1):30. doi: 10.1186/1758-2946-5-30.

Abstract

: Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many diseases are important limitations to such approaches. Here we focused on a drug-centered approach by predicting the therapeutic class of FDA-approved compounds, not considering data concerning the diseases. We propose a novel computational approach to predict drug repositioning based on state-of-the-art machine-learning algorithms. We have integrated multiple layers of information: i) on the distances of the drugs based on how similar are their chemical structures, ii) on how close are their targets within the protein-protein interaction network, and iii) on how correlated are the gene expression patterns after treatment. Our classifier reaches high accuracy levels (78%), allowing us to re-interpret the top misclassifications as re-classifications, after rigorous statistical evaluation. Efficient drug repurposing has the potential to significantly impact the whole field of drug development. The results presented here can significantly accelerate the translation into the clinics of known compounds for novel therapeutic uses.

摘要

现有的药物重定位计算方法要么仅依赖于处理后细胞系的基因表达反应,要么依赖于药物-疾病关系,融合了多个信息层次。然而,基因表达的噪声性质和许多疾病的基因组数据的稀缺性是这些方法的重要限制。在这里,我们专注于一种以药物为中心的方法,通过预测 FDA 批准化合物的治疗类别,而不考虑与疾病相关的数据。我们提出了一种基于最先进的机器学习算法的预测药物重定位的新计算方法。我们整合了多个信息层:i)基于药物化学结构的相似性,计算药物之间的距离,ii)计算药物靶点在蛋白质-蛋白质相互作用网络中的接近程度,iii)计算药物处理后的基因表达模式的相关性。我们的分类器达到了很高的准确性水平(78%),使我们能够在严格的统计评估后,将前几个错误分类重新解释为重新分类。高效的药物重新定位有可能对整个药物开发领域产生重大影响。这里呈现的结果可以显著加快已知化合物用于新的治疗用途的临床转化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5881/3704944/409e09d292cd/1758-2946-5-30-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验