Suppr超能文献

面向用于术中手术切缘评估的显微内镜电阻抗断层成像技术。

Toward microendoscopic electrical impedance tomography for intraoperative surgical margin assessment.

作者信息

Halter Ryan J, Kim Young-Joong

出版信息

IEEE Trans Biomed Eng. 2014 Nov;61(11):2779-86. doi: 10.1109/TBME.2014.2329461. Epub 2014 Jun 6.

Abstract

No clinical protocols are routinely used to intraoperatively assess surgical margin status during prostate surgery. Instead, margins are evaluated through pathological assessment of the prostate following radical prostatectomy, when it is too late to provide additional surgical intervention. An intraoperative device potentially capable of assessing surgical margin status based on the electrical property contrast between benign and malignant prostate tissue has been developed. Specifically, a microendoscopic electrical impedance tomography (EIT) probe has been constructed to sense and image, at near millimeter resolution, the conductivity contrast within heterogeneous biological tissues with the goal of providing surgeons with real-time assessment of margin pathologies. This device consists of a ring of eight 0.6-mm diameter electrodes embedded in a 5-mm diameter probe tip to enable access through a 12-mm laparoscopic port. Experiments were performed to evaluate the volume of tissue sensed by the probe. The probe was also tested with inclusions in gelatin, as well as on a sample of porcine tissue with clearly defined regions of adipose and muscle. The probe's area of sensitivity consists of a circular area of 9.1 mm(2) and the maximum depth of sensitivity is approximately 1.5 mm. The probe is able to distinguish between high contrast muscle and adipose tissue on a sub-mm scale (∼500 μm). These preliminary results suggest that EIT is possible in a probe designed to fit within a 12-mm laparoscopic access port.

摘要

在前列腺手术过程中,目前尚无常规的临床方案用于术中评估手术切缘状态。相反,切缘是在前列腺癌根治术后通过对前列腺进行病理评估来确定的,而此时再进行额外的手术干预已经为时过晚。目前已经开发出一种术中设备,它有可能基于良性和恶性前列腺组织之间的电学特性差异来评估手术切缘状态。具体而言,一种微型内窥镜电阻抗断层成像(EIT)探头已被制造出来,其目的是以近毫米级的分辨率来感知和成像异质生物组织内的电导率差异,以便为外科医生提供切缘病变的实时评估。该设备由一个嵌入5毫米直径探头尖端的由八个直径0.6毫米电极组成的环构成,以使其能够通过12毫米的腹腔镜端口进入。进行了实验以评估探头所感知的组织体积。该探头还在明胶包埋物以及具有明确界定的脂肪和肌肉区域的猪组织样本上进行了测试。探头的敏感区域是一个9.1平方毫米的圆形区域,最大敏感深度约为1.5毫米。该探头能够在亚毫米尺度(约500微米)上区分高对比度的肌肉和脂肪组织。这些初步结果表明,在设计用于适配12毫米腹腔镜接入端口的探头中实现电阻抗断层成像技术是可行的。

相似文献

1
Toward microendoscopic electrical impedance tomography for intraoperative surgical margin assessment.
IEEE Trans Biomed Eng. 2014 Nov;61(11):2779-86. doi: 10.1109/TBME.2014.2329461. Epub 2014 Jun 6.
3
3D Microendoscopic Electrical Impedance Tomography for Margin Assessment During Robot-Assisted Laparoscopic Prostatectomy.
IEEE Trans Med Imaging. 2015 Jul;34(7):1590-1601. doi: 10.1109/TMI.2015.2407833. Epub 2015 Feb 27.
5
Towards intraoperative surgical margin assessment: Validation of an electrical impedance-based probe with ex vivo bovine tissue.
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10340037.
6
A Novel Regularization Technique for Microendoscopic Electrical Impedance Tomography.
IEEE Trans Med Imaging. 2016 Jul;35(7):1593-603. doi: 10.1109/TMI.2016.2520907. Epub 2016 Jan 22.
7
Development of an Electrical Impedance Tomography Coupled Surgical Stapler for Tissue Characterization.
IEEE Trans Biomed Eng. 2024 Jan;71(1):97-105. doi: 10.1109/TBME.2023.3292541. Epub 2023 Dec 22.
8
An electrical impedance tomography (EIT) multi-electrode needle-probe device for local assessment of heterogeneous tissue impeditivity.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:1385-1388. doi: 10.1109/EMBC.2017.8037091.
10
Robot-Assisted Electrical Impedance Scanning system for 2D Electrical Impedance Tomography tissue inspection.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3729-3733. doi: 10.1109/EMBC46164.2021.9629590.

引用本文的文献

1
Development and evaluation of a robotic system for lumbar puncture and epidural steroid injection.
Front Neurorobot. 2023 Oct 10;17:1253761. doi: 10.3389/fnbot.2023.1253761. eCollection 2023.
2
Design of a Drop-in EBI Sensor Probe for Abnormal Tissue Detection in Minimally Invasive Surgery.
J Electr Bioimpedance. 2020 Dec 31;11(1):87-95. doi: 10.2478/joeb-2020-0013. eCollection 2020 Jan.
3
Healthy and tumoral tissue resistivity in wild-type and sparc-/- animal models.
Med Biol Eng Comput. 2016 Dec;54(12):1949-1957. doi: 10.1007/s11517-016-1489-6. Epub 2016 Apr 21.

本文引用的文献

1
Cancer statistics, 2014.
CA Cancer J Clin. 2014 Jan-Feb;64(1):9-29. doi: 10.3322/caac.21208. Epub 2014 Jan 7.
2
Reliability of in vivo measurements of the dielectric properties of anisotropic tissue: a simulative study.
Phys Med Biol. 2013 May 21;58(10):3163-76. doi: 10.1088/0031-9155/58/10/3163. Epub 2013 Apr 19.
3
Multi-GPU Jacobian accelerated computing for soft-field tomography.
Physiol Meas. 2012 Oct;33(10):1703-15. doi: 10.1088/0967-3334/33/10/1703. Epub 2012 Sep 26.
4
An electrical impedance tomography system for gynecological application GIT with a tiny electrode array.
Physiol Meas. 2012 May;33(5):849-62. doi: 10.1088/0967-3334/33/5/849. Epub 2012 Apr 24.
5
Assessment of electrical impedance endotomography for hardware specification.
Biomed Imaging Interv J. 2006 Apr;2(2):e24. doi: 10.2349/biij.2.2.e24. Epub 2006 Apr 1.
7
Electrical properties of prostatic tissues: I. Single frequency admittivity properties.
J Urol. 2009 Oct;182(4):1600-7. doi: 10.1016/j.juro.2009.06.007. Epub 2009 Aug 15.
8
Electrical properties of prostatic tissues: II. Spectral admittivity properties.
J Urol. 2009 Oct;182(4):1608-13. doi: 10.1016/j.juro.2009.06.013. Epub 2009 Aug 15.
9
GREIT: a unified approach to 2D linear EIT reconstruction of lung images.
Physiol Meas. 2009 Jun;30(6):S35-55. doi: 10.1088/0967-3334/30/6/S03. Epub 2009 Jun 2.
10
Raman spectroscopy and its urological applications.
Indian J Urol. 2008 Oct;24(4):444-50. doi: 10.4103/0970-1591.39550.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验