Suppr超能文献

使用递归生成的回归器在血氧水平依赖性功能磁共振成像中追踪脑血流

Tracking cerebral blood flow in BOLD fMRI using recursively generated regressors.

作者信息

Tong Yunjie, Frederick Blaise deB

机构信息

Brain Imaging Center, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard University Medical School, Boston, Massachusetts.

出版信息

Hum Brain Mapp. 2014 Nov;35(11):5471-85. doi: 10.1002/hbm.22564. Epub 2014 Jun 23.

Abstract

BOLD functional MRI (fMRI) data are dominated by low frequency signals, many of them of unclear origin. We have recently shown that some portions of the low frequency oscillations found in BOLD fMRI are systemic signals closely related to the blood circulation (Tong et al. [2013]: NeuroImage 76:202-215). They are commonly treated as physiological noise in fMRI studies. In this study, we propose and test a novel data-driven analytical method that uses these systemic low frequency oscillations in the BOLD signal as a tracer to follow cerebral blood flow dynamically. Our findings demonstrate that: (1) systemic oscillations pervade the BOLD signal; (2) the temporal traces evolve as the blood propagates though the brain; and, (3) they can be effectively extracted via a recursive procedure and used to derive the cerebral circulation map. Moreover, this method is independent from functional analyses, and thus allows simultaneous and independent assessment of information about cerebral blood flow to be conducted in parallel with the functional studies. In this study, the method was applied to data from the resting state scans, acquired using a multiband EPI sequence (fMRI scan with much shorter TRs), of seven healthy participants. Dynamic maps with consistent features resembling cerebral blood circulation were derived, confirming the robustness and repeatability of the method.

摘要

血氧水平依赖性功能磁共振成像(BOLD fMRI)数据主要由低频信号主导,其中许多信号的来源不明。我们最近发现,BOLD fMRI中发现的低频振荡的某些部分是与血液循环密切相关的全身信号(Tong等人,[2013]:《神经影像学》76:202 - 215)。在fMRI研究中,它们通常被视为生理噪声。在本研究中,我们提出并测试了一种新的数据驱动分析方法,该方法利用BOLD信号中的这些全身低频振荡作为示踪剂来动态跟踪脑血流。我们的研究结果表明:(1)全身振荡遍布BOLD信号;(2)随着血液在大脑中传播,时间轨迹会发生变化;(3)它们可以通过递归程序有效地提取出来,并用于推导脑循环图。此外,该方法独立于功能分析,因此允许在进行功能研究的同时并行独立地评估有关脑血流的信息。在本研究中,该方法应用于七名健康参与者使用多频段EPI序列(具有更短TR的fMRI扫描)采集的静息状态扫描数据。得出了具有类似于脑循环的一致特征的动态图,证实了该方法的稳健性和可重复性。

相似文献

1
Tracking cerebral blood flow in BOLD fMRI using recursively generated regressors.
Hum Brain Mapp. 2014 Nov;35(11):5471-85. doi: 10.1002/hbm.22564. Epub 2014 Jun 23.
3
Cerebral blood flow and fMRI BOLD auditory language activation in temporal lobe epilepsy.
Epilepsia. 2012 Apr;53(4):631-8. doi: 10.1111/j.1528-1167.2012.03403.x. Epub 2012 Feb 14.
4
Cerebral circulation time derived from fMRI signals in large blood vessels.
J Magn Reson Imaging. 2019 Nov;50(5):1504-1513. doi: 10.1002/jmri.26765. Epub 2019 Apr 29.
5
Vascular effects of caffeine found in BOLD fMRI.
J Neurosci Res. 2019 Apr;97(4):456-466. doi: 10.1002/jnr.24360. Epub 2018 Nov 29.
7
Vascular autorescaling of fMRI (VasA fMRI) improves sensitivity of population studies: A pilot study.
Neuroimage. 2016 Jan 1;124(Pt A):794-805. doi: 10.1016/j.neuroimage.2015.09.033. Epub 2015 Sep 28.
8
Partitioning of physiological noise signals in the brain with concurrent near-infrared spectroscopy and fMRI.
J Cereb Blood Flow Metab. 2011 Dec;31(12):2352-62. doi: 10.1038/jcbfm.2011.100. Epub 2011 Aug 3.
9
Characterizing the modulation of resting-state fMRI metrics by baseline physiology.
Neuroimage. 2018 Jun;173:72-87. doi: 10.1016/j.neuroimage.2018.02.004. Epub 2018 Feb 13.
10
Investigation of BOLD fMRI resonance frequency shifts and quantitative susceptibility changes at 7 T.
Hum Brain Mapp. 2014 May;35(5):2191-205. doi: 10.1002/hbm.22320. Epub 2013 Jul 29.

引用本文的文献

1
Temporal fMRI Dynamics Map Dopamine Physiology.
bioRxiv. 2025 Mar 26:2025.03.24.645022. doi: 10.1101/2025.03.24.645022.
2
Robust data-driven segmentation of pulsatile cerebral vessels using functional magnetic resonance imaging.
Interface Focus. 2024 Dec 6;14(6):20240024. doi: 10.1098/rsfs.2024.0024.
4
Understanding recovery of language after stroke: insights from neurovascular MRI studies.
Front Lang Sci. 2023;2. doi: 10.3389/flang.2023.1163547. Epub 2023 Jun 5.
5
Resting-state networks representation of the global phenomena.
Front Neurosci. 2023 Aug 17;17:1220848. doi: 10.3389/fnins.2023.1220848. eCollection 2023.
6
The confound of hemodynamic response function variability in human resting-state functional MRI studies.
Front Neurosci. 2023 Jul 14;17:934138. doi: 10.3389/fnins.2023.934138. eCollection 2023.
10
A practical modification to a resting state fMRI protocol for improved characterization of cerebrovascular function.
Neuroimage. 2021 Oct 1;239:118306. doi: 10.1016/j.neuroimage.2021.118306. Epub 2021 Jun 24.

本文引用的文献

1
PHYCAA+: an optimized, adaptive procedure for measuring and controlling physiological noise in BOLD fMRI.
Neuroimage. 2013 Nov 15;82:306-25. doi: 10.1016/j.neuroimage.2013.05.102. Epub 2013 May 31.
2
Resting-state fMRI confounds and cleanup.
Neuroimage. 2013 Oct 15;80:349-59. doi: 10.1016/j.neuroimage.2013.04.001. Epub 2013 Apr 6.
5
Fractal dimension and vessel complexity in patients with cerebral arteriovenous malformations.
PLoS One. 2012;7(7):e41148. doi: 10.1371/journal.pone.0041148. Epub 2012 Jul 18.
8
Ongoing physiological processes in the cerebral cortex.
Neuroimage. 2012 Oct 1;62(4):2190-200. doi: 10.1016/j.neuroimage.2011.10.059. Epub 2011 Oct 25.
9
FSL.
Neuroimage. 2012 Aug 15;62(2):782-90. doi: 10.1016/j.neuroimage.2011.09.015. Epub 2011 Sep 16.
10
The great brain versus vein debate.
Neuroimage. 2012 Aug 15;62(2):970-4. doi: 10.1016/j.neuroimage.2011.09.005. Epub 2011 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验