Pacific Parkinson's Research Centre and National Parkinson Foundation Centre of Excellence, University of British Columbia and Vancouver Coastal Health, Vancouver, BC, Canada.
Institut National de la Santé et de la Recherche Médicale, U 1127, F-75013, Paris, France; Centre National de la Recherche Scientifique, Unite Mixte de Recherche 7225, F-75013, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Paris 06, Unite Mixte de Recherche S 1127, F-75013, Paris, France; Institut du Cerveau et de la Moelle épinière, ICM (Centre de NeuroImagerie de Recherche, CENIR), F-75013, Paris, France; Assistance Publique, Hopitaux de Paris, Hôpital de la Pitié Salpêtrière, Service de Neuroradiologie F-75013, Paris, France.
Lancet. 2014 Aug 9;384(9942):532-44. doi: 10.1016/S0140-6736(14)60041-6. Epub 2014 Jun 18.
Recent advances in structural and functional imaging have greatly improved our ability to assess normal functions of the basal ganglia, diagnose parkinsonian syndromes, understand the pathophysiology of parkinsonism and other movement disorders, and detect and monitor disease progression. Radionuclide imaging is the best way to detect and monitor dopamine deficiency, and will probably continue to be the best biomarker for assessment of the effects of disease-modifying therapies. However, advances in magnetic resonance enable the separation of patients with Parkinson's disease from healthy controls, and show great promise for differentiation between Parkinson's disease and other akinetic-rigid syndromes. Radionuclide imaging is useful to show the dopaminergic basis for both motor and behavioural complications of Parkinson's disease and its treatment, and alterations in non-dopaminergic systems. Both PET and MRI can be used to study patterns of functional connectivity in the brain, which is disrupted in Parkinson's disease and in association with its complications, and in other basal-ganglia disorders such as dystonia, in which an anatomical substrate is not otherwise apparent. Functional imaging is increasingly used to assess underlying pathological processes such as neuroinflammation and abnormal protein deposition. This imaging is another promising approach to assess the effects of treatments designed to slow disease progression.
近年来,结构和功能影像学的进展极大地提高了我们评估基底神经节正常功能、诊断帕金森综合征、了解帕金森病和其他运动障碍的病理生理学、以及检测和监测疾病进展的能力。放射性核素成像是检测和监测多巴胺缺乏的最佳方法,可能仍将继续作为评估疾病修饰治疗效果的最佳生物标志物。然而,磁共振的进步使我们能够将帕金森病患者与健康对照者区分开来,并且在区分帕金森病与其他运动不能-强直综合征方面显示出巨大的潜力。放射性核素成像有助于显示帕金森病及其治疗的运动和行为并发症的多巴胺能基础,以及非多巴胺能系统的改变。正电子发射断层扫描和磁共振成像都可用于研究大脑的功能连接模式,帕金森病及其并发症以及其他基底神经节疾病(如肌张力障碍)中存在这种模式的破坏,而这些疾病在其他方面没有明显的解剖学基础。功能成像越来越多地用于评估神经炎症和异常蛋白沉积等潜在的病理过程。这种成像方法是评估旨在减缓疾病进展的治疗效果的另一种有前途的方法。